
Route Injection

Projekt T3_2000

für die Prüfung zum

Bachelor of Science

des Studienganges Informationstechnik

an der

Dualen Hochschule Baden-Württemberg Karlsruhe

von

Leon Louis Schoch

Abgabedatum 18. September 2023

Bearbeitungszeitraum 27 Wochen
Matrikelnummer 1015290
Kurs TINF21B5
Ausbildungsfirma Anexia Deutschland GmbH

Karlsruhe
Betreuer der Ausbildungsfirma Stephan Peijnik-Steinwender (B.Sc.)
Gutachter der Studienakademie Prof. Dr. Markus Strand

Erklärung

Ich versichere hiermit, dass ich meine Projekt T3_2000 mit dem Thema:
Route Injection selbstständig verfasst und keine anderen als die angege-
benen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass
die eingereichte elektronische Fassung mit der gedruckten Fassung überein-
stimmt.

Ort, Datum Unterschrift

Sperrvermerk

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Auszügen Personen
außerhalb des Prüfungsprozesses und des Evaluationsverfahrens zugänglich
gemacht werden, sofern keine anderslautende Genehmigung vom Dualen
Partner vorliegt.

Zusammenfassung

Ein Distributed Denial of Service (DDoS)-Angriff kann eine starke Auslastung
der betroffenen Systeme verursachen. Dies kann einen Absturz zur Folge haben,
oder den Zugriff auf die Systeme verhindern. Um dieses Problem zu lösen
wurde der Route Injection Service entwickelt, mit welchem ein Nutzer in der
Lage ist, Netzwerkroute über Border Gateway Protocol (BGP)-Communities
zu manipulieren. Ein DDoS-Angriff kann daher in ein Blackhole geroutet, und
eine Belastung der Zielsysteme verhindert werden.

A DDoS-Attack can cause a high load on the attacked systems. As a result, the
systems might be inaccessible or crash. To solve this problem, we developed the
route injection service, which enables a user to manipulate network routes via
BGP-Communities. A DDoS-Attack can then be routed into a blackhole, and a
strain on the target systems can be avoided.

Inhaltsverzeichnis

1 Einleitung 8

2 Grundlagen 10
2.1 Einführung in die Problematik 10
2.2 Technologie Selektion . 11

2.2.1 Django Rest Framework 11
2.2.2 Hashicorp Consul . 11
2.2.3 Docker . 11
2.2.4 Bird . 11

2.3 Stand der Technik . 13

3 Architekur 16
3.1 Application Programming Interface (API) 17
3.2 Hashicorp Consul . 17
3.3 Injector . 17
3.4 Router . 17

4 API Komponente 18
4.1 Aufgaben . 18
4.2 Umsetzung . 19

5 Injector Komponente 21
5.1 Aufgaben . 21
5.2 Umsetzung . 23

5.2.1 Generieren der Config Files für Bird 23
5.2.2 Status der Routen von Bird abfragen 23
5.2.3 Bird und Bird6 aufteilen 23
5.2.4 Realisierung des Heartbeats 23
5.2.5 Emergency-Mode implementieren 23

1

INHALTSVERZEICHNIS INHALTSVERZEICHNIS

5.3 Testen . 23

6 Staging Umgebung 24
6.1 Planung . 24
6.2 Umsetzung . 24

7 Fazit 25

Index 26

Literaturverzeichnis 26

Anhang 26

2

Abbildungsverzeichnis

3.1 Route Injection Architektur . 16

3

Tabellenverzeichnis

2.1 Aufbau der ’Open’-Message . 13
2.2 Aufbau der ’Update’-Message 14

4

Liste der Code Snippets

4.1 BaseRouteViewset Klasse . 19
4.2 DeleteRouteViewset Klasse . 20
4.3 delete_route Methode . 20

5

Formelverzeichnis

6

Abkürzungsverzeichnis

API Application Programming Interface 1

DRF Django Rest Framework . 11

REST Representational State Transfer 11

BGP Border Gateway Protocol . 1

DDoS Distributed Denial of Service 1

SQL Structured Query Language 11

AS Autonome Systeme . 8

VM Virtuelle Maschine . 11

TCP Transmission Control Protocol 13

RIP Routing Information Protocol 13

OSPF Open Shortest Path First . 13

ASN Autonome System Nummer 13

JSON JavaScript Object Notation 18

7

Kapitel 1

Einleitung

Die zunehmende Abhängigkeit von digitalen Kommunikationsnetzwerken und
die kontinuierliche Weiterentwicklung der globalen Infrastruktur haben zu einer
signifikanten Steigerung des Datenverkehrs im Internet geführt. Während diese
Fortschritte zahlreiche Vorteile für die Gesellschaft mit sich bringen, eröffnen
sie auch neue Herausforderungen im Hinblick auf die Sicherheit und Stabilität
des Netzwerkbetriebs. In diesem Zusammenhang gewinnt die Fähigkeit, den
Datenverkehr effektiv zu leiten und gleichzeitig gegen potenzielle Bedrohun-
gen zu schützen, zunehmend an Bedeutung. Das BGP, als das fundamentalste
Routing-Protokoll im Internet, spielt eine kritische Rolle bei der Bestimmung der
optimalen Routen für den Datenverkehr zwischen Autonomen Systemen (ASen).
Allerdings hat die BGP-Protokollsuite bisher nur begrenzte Möglichkeiten zur
gezielten Beeinflussung des Datenverkehrs in Ausnahmesituationen oder bei
Sicherheitsvorfällen geboten. Eine solche Ausnahmesituation tritt beispielswei-
se auf, wenn ein Netzwerkressourcen-Engpass aufweist oder wenn bösartige
Akteure versuchen, den Datenverkehr abzufangen oder zu manipulieren. Die
vorliegende Forschung widmet sich daher der Entwicklung eines innovativen
Ansatzes, der es ermöglicht, Internet-Routen über BGP gezielt in sogenannte
„Blackholes“zu lenken. Dieses Konzept zielt darauf ab, den Datenverkehr von
bestimmten Quellen oder zu bestimmten Zielen hinzuleiten, indem die betref-
fenden Routen im Netzwerk auf Blackholes abgebildet werden. Diese Blackholes
repräsentieren Pfade im Netzwerk, die keinen tatsächlichen Datenaustausch
ermöglichen, sondern den Verkehr effektiv abfangen und isolieren. Durch die
Einrichtung dieser Blackholes wird eine maßgeschneiderte Methode zur Vertei-
digung gegen DDoS-Angriffe sowie zur effizienten Nutzung von Ressourcen in
Überlastsituationen geschaffen. Die Motivation für dieses Projekt liegt darin,

8

KAPITEL 1. EINLEITUNG

die Flexibilität und die Sicherheitsaspekte von BGP-Routings zu erweitern, um
den heutigen Anforderungen an die Netzwerksicherheit und -stabilität gerecht
zu werden. Durch die Schaffung eines Mechanismus zur Blackhole-Routing
kann das Risiko von Datenverkehrsumleitung durch bösartige Einflüsse mini-
miert und die Möglichkeit zur gezielten Netzwerkressourcenlenkung maximiert
werden. Die Ergebnisse dieses Projekts haben das Potenzial, die bestehenden
Ansätze zur Netzwerkverwaltung und -sicherheit zu erweitern und somit einen
bedeutenden Beitrag zur Aufrechterhaltung der Integrität und Effizienz globaler
Kommunikationsnetzwerke zu leisten.

9

Kapitel 2

Grundlagen

2.1 Einführung in die Problematik

Um im Falle eines DDoS Angriffs schnell reagieren zu können, muss es eine
bequeme und einfache Möglichkeit geben, Routen zu manipulieren. Hierfür
wurde das Projekt Remote Triggered Blackholing gestartet. Im Falle eines DDoS-
Angriffs könnten somit IP Präfixe des Angreifers gezielt in ein Blackhole geroutet
werden. Eine Belastung der Zielsysteme könnte somit verhindert werden, da
die boshaften Pakete des Angreifers somit nicht beim Zielsystem ankommen
würden, sondern in das schwarze Loch (Blackhole) weitergeleitet werden. Um die
Routen in Routern manipulieren zu können, müssen diese über Injektoren in die
Router injiziert werden. Im Verlaufe dieser Projektarbeit wird die Entwicklung
der Injektoren Komponente und der Aufbau einer Staging(Testing) Umgebung
genauer dargelegt. Der Aufbau und die Entwicklung der API Komponente wurde
bereits zu einem großteil in der T1000 erläutert, jedoch wurde im Rahmen der
T2000 diese um einen Delete-Endpunkt erweitert. [Schoch 2022]

10

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

2.2 Technologie Selektion

2.2.1 Django Rest Framework

„Django ist ein Web-Framework, dessen Ziel es ist, die Entwicklung von
Web Applikationen schnell, einfach und übersichtlich zu machen. Das Djan-
go Representational State Transfer (REST) Framework, hier nachfolgend als
Django Rest Framework (DRF) bezeichnet, ist ein REST Framework welches
auf Django basiert. Mit DRF lassen sich REST-ful APIs schnell und einfach
gestalten. Hierfür bietet Django eine Reihe an vorgefertigten Hilfestellung an,
welche im Verlaufe dieser Projektarbeit näher erläutert werden. Datenbank-
modelle werden hier einfach programmatisch deklariert und anschließend von
Django automatisch verwaltet. Über Objekte können somit einzelne Werte aus
der Datenbank entnommen werden, ohne sich mühsam mit Structured Query
Language (SQL) Queries auseinandersetzen zu müssen. Sowohl Django als auch
DRF basieren auf der Programmiersprache Python.“ [Vgl. Schoch 2022, S. 8]

2.2.2 Hashicorp Consul

„Consul, entwickelt von Hashicorp, ist eine Netzwerk Service Lösung, welche eine
sichere Kommunikation zwischen Services und Applikation erlaubt. Consul kann
sowohl redundant mit mehreren Nodes, als auch standalone genutzt werden. Für
diese Projektarbeit, wird eine standalone Lösung eingesetzt und es wird lediglich
die Key-Value Store Funktion genutzt. Mit dieser Funktion können Key-Value
[. . .] Paare über das Netzwerk in Consul gespeichert werden.“ [Schoch 2022]

2.2.3 Docker

Docker ist Platform zur Containerisierung von Anwendungen. Hierdurch wird
die Möglichkeit geschaffen eine isoliertes und leichtgewichtige Umgebung zu
schaffen, welche sonst lediglich mittels Virtuellen Maschinen (VMs) möglich
wäre. Durch Docker wird auf produktiven System durch die zusätzliche Iso-
lationsschicht der Containerisierung eine weitere Sicherheitsstufe hinzugefügt,
welche potenziellen Angreifern den Zugriff auf das Hostsystem erschwert.

2.2.4 Bird

Der Bird Internet Routing Daemon (Bird) ist eine Open-Source-Routing-
Software, die als Router fungiert. Bird implementiert unter anderem BGP,

11

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

um Routing-Informationen zwischen Routern auszutauschen und optimale
Routenentscheidungen zu treffen. Bird arbeitet neben anderen BGP-Routern,
um BGP-Sessions aufzubauen, Routing-Updates auszutauschen und Routing-
Informationen zu speichern. Bird kann BGP-Routen exportieren und an andere
Router weitergeben, indem es BGP-‘Update‘-Messages verwendet und Exportre-
geln in seiner Konfigurationsdatei folgt. Diese Regeln definieren, welche Routen
exportiert werden sollen und können durch Filter und Richtlinien gesteuert
werden. Durch den Export von BGP-Routen ermöglicht Bird eine effiziente
und zuverlässige Kommunikation und Weiterleitung in großen Netzwerken.

12

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

2.3 Stand der Technik

Das BGP ist ein Protokoll des Internet-Routings, das die besten Wege für den
Datenverkehr zwischen ASen bestimmt. Im ursprünglichen Sinne war mit einem
AS eine Organisation mit einem Standort gemeint, welche intern über ein inter-
nes routing Protokoll verfügte. Mit der Zeit hat sich die Bedeutung eines AS
abgewandelt und eine Autonome System Nummer (ASN) kann von einer Orga-
nisation Standortübergreifend verwendet werden bzw. eine Organisation kann
über mehrere ASNs verfügen. Es verwendet Peering-Verbindungen zwischen
Routern, um Informationen über erreichbare Netzwerke auszutauschen und
die optimalen Pfade für den Datenaustausch zu ermitteln. Anders als bei her-
kömmlichen Routing Protokollen wie dem Routing Information Protocol (RIP)
oder Open Shortest Path First (OSPF), wird hier eine direkte Transmission
Control Protocol (TCP) Verbindung zwischen Routern(Neighbours/Nachbarn)
hergestellt. Eine weitere Unterscheidung besteht darin, dass es sich bei BGP um
’Policy’-basiertes Routing, im Vergleich zu ‘Metrik‘ basierten Routing handelt.
Konkret bedeutet dies, dass ein AS selbst bestimmen kann, wie Datenverkehr
geroutet werden soll, sollte das AS über mindestens zwei Uplinks verfügen.

Wenn zwei BGP Nachbarn eine TCP Verbindung aufgebaut haben, begin-
nen diese BGP Informationen in Form von Nachrichten auszutauschen. Jede
Nachricht besteht aus einem Header, und dem tatsächlichen Inhalt. [Vgl. Beij-
num 2002, S. 19 f.] Um eine BGP Verbindung herzustellen, müssen sich Router
über eine ‘Open‘-Message verbinden. Diese wird direkt nach dem Aufbau der
TCP Verbindung ausgetauscht. [Vgl. Beijnum 2002, S. 20 f.]

Version My AS Hold time Identifier Parlen Optional parameters
1 byte 2 bytes 2 bytes 4 bytes 1 byte 0-255 bytes

Tabelle 2.1: Aufbau der ’Open’-Message
Quelle: [RFC4271 Rekhter, Hares und Li 2006] in Anlehnung an [Beijnum

2002, S. 20]

Sollte die Open-Message erfolgreich vom Gegenstück angenommen worden
sein, sendet dieser eine ’Keepalive’-Message zurück. Anschließend wird die
BGP-Routentabelle über ’Update’-Messages ausgetauscht. [Vgl. Beijnum 2002,
S. 20]

13

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

UR length Withdrawn routes PA length Path attributes NLRI
2 bytes Variable 2 bytes Variable Variable

Tabelle 2.2: Aufbau der ’Update’-Message
Quelle: [RFC4271 Rekhter, Hares und Li 2006] in Anlehnung an [Beijnum

2002, S. 20]

Durch die ‘Update‘-Message werden die eigentlichen Informationen über-
tragen. Hierdurch können neue Routen hinzugefügt, oder alte Routen zurück-
gezogen werden. Ein nicht optionales Attribute ist der ‘AS_PATH‘, welcher
beschreibt, über welche AS bestimmte Präfixe zu erreichen sind.

14

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

BGP-Communities sind ein Mechanismus, mit welchem Netzwerkbetreiber
spezifische Gruppen oder Kategorien von Präfixen markieren können. Die-
se Markierungen, als „Communities“ bezeichnet, können verwendet werden,
um Routen zu identifizieren und zu beeinflussen, wie sie von anderen ASen
interpretiert werden. Durch die Verwendung von Communities können Netz-
werkbetreiber das Routing auf feinere Weise steuern und anpassen, ohne die
Kernstruktur des BGP-Netzwerks zu verändern. Die Manipulation von Routen
mittels BGP Communities erfolgt, indem einem bestimmten Präfix eine oder
mehrere BGP-Communities zugewiesen werden. Andere AS können dann diese
Community-Markierungen verwenden, um spezifische Aktionen auszuführen,
wie z.B.:

• Pfadwahl beeinflussen: Durch das Zuweisen von Communities zu be-
stimmten Präfixen können Netzwerkbetreiber festlegen, wie andere AS
ihre Routen interpretieren sollen. Dies kann dazu verwendet werden, den
bevorzugten Weg für den Datenverkehr zu beeinflussen.

• Traffic-Engineering: Netzwerkbetreiber können Communities verwenden,
um den Datenverkehrsfluss zu steuern. Durch Markieren von Präfixen
können sie bestimmte AS dazu anleiten, den Datenverkehr auf bestimmten
Wegen zu leiten, um Netzwerkressourcen effizienter zu nutzen.

• Blackhole-Routing: BGP Communities können dazu genutzt werden,
bestimmte Präfixe zu markieren und den Datenverkehr über Blackholes
zu lenken, um Angriffe oder Überlastungen zu bewältigen. Spezielle für
Blackholing wurde eine eigene Community definiert: 65535:666 [Vgl.
King u. a. 2016]

• Routenfilterung: AS können Community-Markierungen verwenden, um
präzise Routenfilterung durchzuführen. Damit können sie bestimmte
Routen von bestimmten Quellen oder für bestimmte Zwecke filtern oder
akzeptieren.

Die Verwendung von BGP Communities ermöglicht eine flexiblere und zielge-
richtete Steuerung des Internet-Routings. Netzwerkbetreiber können so gezielt
auf unterschiedliche Anforderungen reagieren und gleichzeitig die Integrität
und Stabilität des BGP-Netzwerks aufrechterhalten.

15

Kapitel 3

Architekur

Die Architektur des Route Injection Service besteht aus drei wesentlichen
Bestandteilen, welche entweder direkt verbunden sind oder mittels Hashicorp
Consul Daten austauschen können.

Abbildung 3.1: Route Injection Architektur
Quelle: Firmenintern

16

3.1. API KAPITEL 3. ARCHITEKUR

3.1 API

Die API ist dafür verantwortlich die Eingaben des Users, welche über die
Engine übermittelt wurden zu überprüfen und zu validieren. Sind die Eingaben
nicht korrekt, so gibt die API eine entsprechende Fehlermeldung zurück. In der
Zukunft wird die API auch dafür verantwortlich sein entsprechende Monitoring
Endpunkte zur Verfügung zu stellen, sodass der allgemeine Status des Service
überwacht werden kann.

3.2 Hashicorp Consul

Hashicorp Consul, im weiteren Verlauf nur ‘Consul‘ genannt, wird als Zwischen-
speicher für Routen und deren injizierte BGP-Communities verwendet. Des
Weiteren können Injectoren hier Ihren ‘Heartbeat‘ abspeichern.

3.3 Injector

Der Injector bezieht periodisch(alle 5 Sekunden) die in Consul gespeicherten
Routen. Sollte es hier eine Änderung gegeben haben, wird eine Konfigurations-
datei für den Bird Routingdaemon neu erstellt. Anschließend wird über das
’Bird Controlsocket’ der Befehl zum Neuladen der Konfiguration gegeben.

3.4 Router

Als Router wird der Bird Routingdaemon eingesetzt. Dieser stellt eine BGP-
Session mit einem physischen Router her, welcher die von Bird zu Verfügung
gestellten Router importiert und innerhalb des BGP-Netzwerks weitergibt.

17

Kapitel 4

API Komponente

4.1 Aufgaben

Die API ist die Schnittstelle des Service und außen stehenden Technologien wie
der Anexia Engine. Ihre Hauptaufgabe besteht darin, eine strukturierte Inter-
aktionsmöglichkeit zu bieten, die es internen Benutzern über Systeme wie der
Anexia Engine ermöglicht, BGP-Routen mit zugehörigen BGP-Communities in
das Netzwerk zu injizieren. Dies geschieht durch die Annahme von JavaScript
Object Notation (JSON)-Anfragen, die spezifische Informationen enthalten,
nämlich IPv4- oder IPv6-Präfixe und die entsprechenden BGP-Communities.
Die API führt eine umfassende Validierung der eingehenden Daten durch, um si-
cherzustellen, dass die bereitgestellten Informationen korrekt und im erwarteten
Format vorliegen. Diese Validierung umfasst die Überprüfung der Richtigkeit
der IP-Adressbereiche sowie die syntaktische Korrektheit der zugeordneten
BGP-Communities. Durch diesen Schritt wird gewährleistet, dass nur gültige
Informationen in das System eingebracht werden. Die validierten Daten werden
anschließend an Consul, über dessen eigene API übermittelt. Die Daten werden
so abgelegt, dass der Injector einen erleichterten Zugriff hat.

18

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

4.2 Umsetzung

Da die Konzeption und Implementierung der API schon umfassend in der Pro-
jektarbeit T1000 erläutert wurde, wird auf eine Wiederholung dessen verzichtet.
In diesem Bericht wird lediglich die Implementierung des ‘Delete‘-Endpunkts
dargestellt, da dieser aus zeitlichen Gründen nicht mehr in den ersten beiden
Praxisphase implementiert werden konnte, jedoch ein Grundbestandteil des
entwickelten Service ist.

Die Implementierung eines ‘Delete‘-Endpunkts in der API, mittels des
Django Rest Frameworks, ermöglicht das Löschen von Routen aus dem System.

1 class BaseRouteViewSet (
2 CreateModelMixin ,
3 ReadOnlyModelViewSet ,
4 BaseRequestViewSet ,
5):
6 @action (detail =False , url_path =r"([A-Za -z-_/]*) status /(?P<

task_info_id >[0 -9a-z -]+)")
7 def status (self , request , task_info_id):
8 route_object = get_object_or_404 (
9 self. serializer_class .Meta.model , task_info_id =

task_info_id
10)
11 propagate_status (route_object)
12 return super (). status (request , task_info_id)

Code Snippet 4.1: BaseRouteViewset Klasse

Der in Snippet 4.1 gezeigte Code stellt eine Mutterklasse dar, von welcher
sowohl der ‘Create‘, als auch ‘Delete‘-Endpunkt erben. Durch diese Klasse wird
die Möglichkeit gegeben, von der Anexia Engine erwartete Endpunkte einfach
zu implementieren, ohne dass sich ein Entwickler mit den Feinheiten dessen
auseinandersetzen muss. Da hier die CreateModelMixin Klasse geerbt wird,
stellt sich das DRF automatisch ein ’POST’-Requests für diesen Endpunkt zu
akzeptieren.

19

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

1 class DeleteRouteViewSet (BaseRouteViewSet):
2 queryset = DeleteRoute . objects .all ()
3 serializer_class = DeleteRouteSerializer
4

5 def perform_create (self , serializer):
6 super (). perform_create (serializer)
7 delete_route (serializer . instance)

Code Snippet 4.2: DeleteRouteViewset Klasse

Die tatsächliche Implementierung fällt durch das Erben von der ‘Base-
RouteViewSet‘ Mutterklasse sehr simpel aus. Durch das Überschreiben der
perform_create Methode, welche vom DRF zur Verfügung gestellt wird, kann
diese als Hook benutzt werden um eigenen Code ausführen zu lassen. Mit der
Super Methode wird sichergestellt, dass die nicht überschriebene Ursprungs-
methode von perform_create ausgeführt wird. Das DRF erstellt dann einen
Datenbankeintrag mit den vom Nutzer eingegeben Werten. Vor dem Ende
des Kontextes der Methode wird noch eine weitere Methode delete_route
aufgerufen.

1 def delete_route (instance):
2 consul_instance = prepare_consul (os. getenv (" CONSUL_HOST "),

os. getenv (" CONSUL_PORT "))
3 prefix = str(instance . prefix)
4 prefix_encoding = get_prefix_encoding (prefix)
5 consul_instance .kv. delete (
6 f’v1/route/ global /{ prefix_encoding }/{ prefix . replace

("/" , "_")}’
7)
8 update_active_injectors (instance)

Code Snippet 4.3: delete_route Methode

Hier findet nun das eigentliche Übermitteln der Daten an Consul statt.

20

Kapitel 5

Injector Komponente

5.1 Aufgaben

Der Injector ist der zentrale Baustein des Route Injection Service, der die
Möglichkeit bietet, mittels BGP Communities, Routen in das Netzwerk zu
injizieren. Der Injector erfüllt dabei eine Reihe von wesentlichen Aufgaben:

Zuallererst ist der Injector für die Konvertierung der von der API empfan-
genen Routen in eine für den Router (Bird) verständliche Konfigurationsdatei
verantwortlich. Diese Konvertierung ist von entscheidender Bedeutung, um
die Weiterleitung der Routen an den Router in einem kompatiblen Format
sicherzustellen. Während die Validierung der Präfixe und Communities von
der API Komponente übernommen wird, hat der Injector eine eigene Validie-
rung für Routen, welchen über den Emergency-Mode angegeben werden, da
hier die API Komponente überbrückt wird. Bei auftretenden Konflikten oder
Unstimmigkeiten kann der Injector angemessene Maßnahmen ergreifen, um
die Integrität der anderen Komponenten und schlussendlich des Netzwerks, zu
gewährleisten. Ein wichtiger Aspekt ist auch die aktive Kommunikation des
Injectors mit dem Router (Bird). Diese Kommunikation erfolgt, um die generier-
ten Konfigurationsänderungen effektiv zu übertragen und sicherzustellen, dass
die injizierten Routen nahtlos in das Routing-Protokoll des Routers integriert
werden. Schließlich stellt der Injector durch präzises loggen sicher, dass im
Falle eines Fehlers, oder im schlimmsten Fall, bei einem Absturz der Kompo-
nente, Ereignisse festgehalten werden. Zusammenfassend fungiert der Injector
als entscheidende Schnittstelle, die die Funktionen der API und des Routers
miteinander verbindet. Mit seiner intelligenten Konvertierung und Verwaltung

21

5.1. AUFGABEN KAPITEL 5. INJECTOR KOMPONENTE

von Routen durch BGP Communities gewährleistet er, dass die gewünschten
Routing-Änderungen präzise und effizient im BGP-Netzwerk implementiert
werden.

22

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2 Umsetzung

5.2.1 Generieren der Config Files für Bird

Um die Routen an den Bird Routing Daemon übermitteln zu können, müssen
diese erst in eine für Bird verständliche Konfigurationsdatei umgewandelt
werden.

Integrität der Konfigurationsdatei sicherstellen

5.2.2 Status der Routen von Bird abfragen

Evaluation der pybird Bibliothek

5.2.3 Bird und Bird6 aufteilen

5.2.4 Realisierung des Heartbeats

5.2.5 Emergency-Mode implementieren

5.3 Testen

23

Kapitel 6

Staging Umgebung

6.1 Planung

6.2 Umsetzung

24

Kapitel 7

Fazit

25

Literatur

Beijnum, Iljitsch van [2002]. Building Reliable Networks with the Border
Gateway Protocol. O’Reilly [siehe S. 13, 14].

King, Thomas u. a. [Okt. 2016]. BLACKHOLE Community. RFC 7999. doi:
10.17487/RFC7999. url: https://www.rfc-editor.org/info/rfc7999
[siehe S. 15].

Rekhter, Yakov, Susan Hares und Tony Li [Jan. 2006]. A Border Gateway
Protocol 4 (BGP-4). RFC 4271. doi: 10.17487/RFC4271. url: https:
//www.rfc-editor.org/info/rfc4271 [siehe S. 13, 14].

Schoch, Leon [Okt. 2022]. API für Route Injection [siehe S. 10, 11].

26

https://doi.org/10.17487/RFC7999
https://www.rfc-editor.org/info/rfc7999
https://doi.org/10.17487/RFC4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271

	1 Einleitung
	2 Grundlagen
	2.1 Einführung in die Problematik
	2.2 Technologie Selektion
	2.2.1 Django Rest Framework
	2.2.2 Hashicorp Consul
	2.2.3 Docker
	2.2.4 Bird

	2.3 Stand der Technik

	3 Architekur
	3.1 API
	3.2 Hashicorp Consul
	3.3 Injector
	3.4 Router

	4 API Komponente
	4.1 Aufgaben
	4.2 Umsetzung

	5 Injector Komponente
	5.1 Aufgaben
	5.2 Umsetzung
	5.2.1 Generieren der Config Files für Bird
	5.2.2 Status der Routen von Bird abfragen
	5.2.3 Bird und Bird6 aufteilen
	5.2.4 Realisierung des Heartbeats
	5.2.5 Emergency-Mode implementieren

	5.3 Testen

	6 Staging Umgebung
	6.1 Planung
	6.2 Umsetzung

	7 Fazit
	Index
	Literaturverzeichnis
	Anhang

