. mh DHBW
dnexid Baden Wirtemberg

Karlsruhe

Route Injection

ProJeExkT T3 2000

fiir die Prifung zum
Bachelor of Science
des Studienganges Informationstechnik
an der
Dualen Hochschule Baden-Wiirttemberg Karlsruhe
von

Leon Louis Schoch

Abgabedatum 18. September 2023

Bearbeitungszeitraum 27 Wochen

Matrikelnummer 1015290

Kurs TINF21B5

Ausbildungsfirma Anexia Deutschland GmbH
Karlsruhe

Betreuer der Ausbildungsfirma Stephan Peijnik-Steinwender (B.Sc.)

Gutachter der Studienakademie Prof. Dr. Markus Strand

Erklarung

Ich versichere hiermit, dass ich meine Projekt T3 2000 mit dem Thema:
Route Injection selbststandig verfasst und keine anderen als die angege-
benen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass
die eingereichte elektronische Fassung mit der gedruckten Fassung tiberein-

stimmt.

Ort, Datum Unterschrift

Sperrvermerk

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Ausziigen Personen
auflerhalb des Priifungsprozesses und des Evaluationsverfahrens zugénglich
gemacht werden, sofern keine anderslautende Genehmigung vom Dualen

Partner vorliegt.

Zusammenfassung

Ein Distributed Denial of Service (DDoS)-Angriff kann eine starke Auslastung
der betroffenen Systeme verursachen. Dies kann einen Absturz zur Folge haben,
oder den Zugriff auf die Systeme verhindern. Um dieses Problem zu losen
wurde der Route Injection Service entwickelt, mit welchem ein Nutzer in der
Lage ist, Netzwerkroute tiber Border Gateway Protocol (BGP)-Communities
zu manipulieren. Ein [DDoSFAngriff kann daher in ein Blackhole geroutet, und

eine Belastung der Zielsysteme verhindert werden.

A[DDoS Attack can cause a high load on the attacked systems. As a result, the
systems might be inaccessible or crash. To solve this problem, we developed the
route injection service, which enables a user to manipulate network routes via
[BGB-Communities. ADDoSAttack can then be routed into a blackhole, and a

strain on the target systems can be avoided.

Inhaltsverzeichnis

[Abbildungsverzeichnis|

Mabell s

|Liste der Code Snippets|

[Akurzungsverzeichnis|

(1

Einleitung|

[2

Grundlagen|

(2.1 Einfihrung in die Problematikl
[2.2 Technologie Selektion|
[2.2.1 Django Rest Frameworkl
[2.2.2 Hashicorp Consul|

[3.1 Application Programming Interface (APT)|

[3.2 Hashicorp Consul

3.3 Injector|

APl Komponente]

[4.1 Autgaben|
[4.2 Umsetzung|.

Injector Komponente)

[>.1 ~Autgaben|

I11

1A%

VI

10
10
10
10

11
11
12

14

INHALTSVERZEICHNIS INHALTSVERZEICHNIS
[5.2 Umsetzung|. 16
[>.2.1 Generieren der Config Files tur Bird]. 16

[5.2.2 Status der Routen von Bird abfragen| 23

[>.2.3 Realisierung des Heartbeats] 25

[5.2.4 Emergency-Mode|o 26

B3 Testenl 32

6 Staging Umgebung] 33
6.1 Planung| 33
[6.2 Umsetzung|. 33
[T_Fazit] 34
Tndex] 35
G hois 35
A a 35

IT

Abbildungsverzeichnis

13.1 Route Injection Architektur|

I1I

Tabellenverzeichnis

[2.1 Autbau der 'Open’-Message|
[2.2 Autbau der "Update’-Message]

IV

Liste der Code Snippets

4.1 DBaseRouteViewset Klassel. 12
4.2 DeleteRouteViewset Klassel 13
4.3 delete route Methode| 13
[>.1 Python Dataclass tur Routen Objektel. 16
[>.2 parse consul values Methodel 17
(.3 generate bird files Methode| 18
[>.4 bird config Methode| 19
[>.5 Jinja Template zur Konfigurationsgenerierung 20
[>.6 Beispiel einer Konfigurationsdatei| 21
[>.7 write config file Methodel 22
[>.8 Unverarbeitete Ausgabe von Pybird|. 23
5.9 respond state to consul Methode| 24
[5.10 create heartbeat Methodel 25
[>.11 Methode zur Validierung von Routen| 27
[H.12 Route Container Dataclass| 29
[5.13 Deklaration der Dateiptade|. 29
.14 add route Methode|. oo 30
[5.15 find and remove in list Methode| 30
[.16 read emergency file Methode|. 31
[5.17 write _emergency file Methode| 31

Abkiirzungsverzeichnis

[APT___1[Application Programming Interface I
[DRF __1[Django Rest Framework| 4
[REST 1 [Representational State Transfer] 4
[Border Gateway Protocoll I
Distributed Denjal of Servied I
MTL JMmetolivd 25
[SQL] [Structured Query Language] 4
[AS ||Autonome Systeme|o 1
VM | Nirtuelle Maschind 4
[MCP__1[Mransmission Confrol Protocell. 6
[RIP___|[Routing Information Protocol 6
[Open Shortest Path First| 6
[ASN__1[Autonome System Nummer] 6
[JavaScript Object Notation] 11
............................ 26
MTL 1Mmetolive 25
DRY _1[Don’t repeat yourself] 31

VI

Kapitel 1
Einleitung

Die zunehmende Abhangigkeit von digitalen Kommunikationsnetzwerken und
die kontinuierliche Weiterentwicklung der globalen Infrastruktur haben zu einer
signifikanten Steigerung des Datenverkehrs im Internet gefithrt. Wahrend diese
Fortschritte zahlreiche Vorteile fiir die Gesellschaft mit sich bringen, eréffnen
sie auch neue Herausforderungen im Hinblick auf die Sicherheit und Stabilitat
des Netzwerkbetriebs. In diesem Zusammenhang gewinnt die Fahigkeit, den
Datenverkehr effektiv zu leiten und gleichzeitig gegen potenzielle Bedrohun-
gen zu schiitzen, zunehmend an Bedeutung. Das [BGP| als das fundamentalste
Routing-Protokoll im Internet, spielt eine kritische Rolle bei der Bestimmung der
optimalen Routen fiir den Datenverkehr zwischen Autonomen Systemen (ASen).
Allerdings hat die BGPFProtokollsuite bisher nur begrenzte Moglichkeiten zur
gezielten Beeinflussung des Datenverkehrs in Ausnahmesituationen oder bei
Sicherheitsvorfallen geboten. Eine solche Ausnahmesituation tritt beispielswei-
se auf, wenn ein Netzwerkressourcen-Engpass aufweist oder wenn bosartige
Akteure versuchen, den Datenverkehr abzufangen oder zu manipulieren. Die
vorliegende Forschung widmet sich daher der Entwicklung eines innovativen
Ansatzes, der es ermoglicht, Internet-Routen tiber gezielt in sogenannte
,Blackholes“zu lenken. Dieses Konzept zielt darauf ab, den Datenverkehr von
bestimmten Quellen oder zu bestimmten Zielen hinzuleiten, indem die betref-
fenden Routen im Netzwerk auf Blackholes abgebildet werden. Diese Blackholes
reprasentieren Pfade im Netzwerk, die keinen tatsachlichen Datenaustausch
ermoglichen, sondern den Verkehr effektiv abfangen und isolieren. Durch die
Einrichtung dieser Blackholes wird eine mafigeschneiderte Methode zur Vertei-
digung gegen [DDoSFAngriffe sowie zur effizienten Nutzung von Ressourcen in

Uberlastsituationen geschaffen. Die Motivation fiir dieses Projekt liegt darin,

KAPITEL 1. EINLEITUNG

die Flexibilitat und die Sicherheitsaspekte von [BGPFRoutings zu erweitern, um
den heutigen Anforderungen an die Netzwerksicherheit und -stabilitit gerecht
zu werden. Durch die Schaffung eines Mechanismus zur Blackhole-Routing
kann das Risiko von Datenverkehrsumleitung durch bosartige Einfliisse mini-
miert und die Moglichkeit zur gezielten Netzwerkressourcenlenkung maximiert
werden. Die Ergebnisse dieses Projekts haben das Potenzial, die bestehenden
Ansétze zur Netzwerkverwaltung und -sicherheit zu erweitern und somit einen
bedeutenden Beitrag zur Aufrechterhaltung der Integritat und Effizienz globaler

Kommunikationsnetzwerke zu leisten.

Kapitel 2

Grundlagen

2.1 Einfiihrung in die Problematik

Um im Falle eines Angriffs schnell reagieren zu kénnen, muss es eine
bequeme und einfache Moglichkeit geben, Routen zu manipulieren. Hierfiir
wurde das Projekt Remote Triggered Blackholing gestartet. Im Falle eines
Angriffs konnten somit IP Préfixe des Angreifers gezielt in ein Blackhole geroutet
werden. Eine Belastung der Zielsysteme kénnte somit verhindert werden, da
die boshaften Pakete des Angreifers somit nicht beim Zielsystem ankommen
wiirden, sondern in das schwarze Loch (Blackhole) weitergeleitet werden. Um die
Routen in Routern manipulieren zu konnen, miissen diese tiber Injektoren in die
Router injiziert werden. Im Verlaufe dieser Projektarbeit wird die Entwicklung
der Injektoren Komponente und der Aufbau einer Staging(Testing) Umgebung
genauer dargelegt. Der Aufbau und die Entwicklung der [API| Komponente wurde
bereits zu einem grofiteil in der T1000 erldutert, jedoch wurde im Rahmen der
T2000 diese um einen Delete-Endpunkt erweitert. [SCHOCH [2022]

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

2.2 Technologie Selektion

2.2.1 Django Rest Framework

,Django ist ein Web-Framework, dessen Ziel es ist, die Entwicklung von
Web Applikationen schnell, einfach und tibersichtlich zu machen. Das Djan-
go Representational State Transfer (REST]) Framework, hier nachfolgend als
Django Rest Framework (DRE]) bezeichnet, ist ein [REST] Framework welches
auf Django basiert. Mit [DRE] lassen sich RESTHul [APIk schnell und einfach
gestalten. Hierfiir bietet Django eine Reihe an vorgefertigten Hilfestellung an,
welche im Verlaufe dieser Projektarbeit naher erlautert werden. Datenbank-
modelle werden hier einfach programmatisch deklariert und anschlieBend von
Django automatisch verwaltet. Uber Objekte kénnen somit einzelne Werte aus
der Datenbank entnommen werden, ohne sich mithsam mit Structured Query
Language (SQL]) Queries auseinandersetzen zu missen. Sowohl Django als auch
[DRE basieren auf der Programmiersprache Python [Vgl. SCHOCH [2022, S. §]

2.2.2 Hashicorp Consul

,Consul, entwickelt von Hashicorp, ist eine Netzwerk Service Losung, welche eine
sichere Kommunikation zwischen Services und Applikation erlaubt. Consul kann
sowohl redundant mit mehreren Nodes, als auch standalone genutzt werden. Fiir
diese Projektarbeit, wird eine standalone Losung eingesetzt und es wird lediglich
die Key-Value Store Funktion genutzt. Mit dieser Funktion kénnen Key-Value
[...] Paare iiber das Netzwerk in Consul gespeichert werden.“ [SCHOCH 2022]

2.2.3 Docker

Docker ist Platform zur Containerisierung von Anwendungen. Hierdurch wird
die Moglichkeit geschaffen eine isoliertes und leichtgewichtige Umgebung zu
schaffen, welche sonst lediglich mittels Virtuellen Maschinen (VMs) moglich
wéare. Durch Docker wird auf produktiven System durch die zuséatzliche Iso-
lationsschicht der Containerisierung eine weitere Sicherheitsstufe hinzugefiigt,

welche potenziellen Angreifern den Zugriff auf das Hostsystem erschwert.

2.2.4 Bird

Der Bird Internet Routing Daemon (Bird) ist eine Open-Source-Routing-
Software, die als Router fungiert. Bird implementiert unter anderem [BGP)

4

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

um Routing-Informationen zwischen Routern auszutauschen und optimale
Routenentscheidungen zu treffen. Bird arbeitet neben anderen BGPFRoutern,
um [BGPlSessions aufzubauen, Routing-Updates auszutauschen und Routing-
Informationen zu speichern. Bird kann [BGPFRouten exportieren und an andere
Router weitergeben, indem es[BGPH Update‘-Messages verwendet und Exportre-
geln in seiner Konfigurationsdatei folgt. Diese Regeln definieren, welche Routen
exportiert werden sollen und konnen durch Filter und Richtlinien gesteuert
werden. Durch den Export von [BGPFRouten ermoglicht Bird eine effiziente

und zuverldssige Kommunikation und Weiterleitung in grolen Netzwerken.

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

2.3 Stand der Technik

Das ist ein Protokoll des Internet-Routings, das die besten Wege fiir den
Datenverkehr zwischen ASen bestimmt. Im urspriinglichen Sinne war mit einem
eine Organisation mit einem Standort gemeint, welche intern iiber ein inter-
nes routing Protokoll verfiigte. Mit der Zeit hat sich die Bedeutung eines
abgewandelt und eine Autonome System Nummer (ASN]) kann von einer Orga-
nisation Standortiibergreifend verwendet werden bzw. eine Organisation kann
iiber mehrere ASNs verfiigen. Es verwendet Peering-Verbindungen zwischen
Routern, um Informationen tiber erreichbare Netzwerke auszutauschen und
die optimalen Pfade fiir den Datenaustausch zu ermitteln. Anders als bei her-
kommlichen Routing Protokollen wie dem Routing Information Protocol (RIP)
oder Open Shortest Path First (OSPF]), wird hier eine direkte Transmission
Control Protocol (TCP)) Verbindung zwischen Routern(Neighbours/Nachbarn)
hergestellt. Eine weitere Unterscheidung besteht darin, dass es sich bei [BGP|um
"Policy’-basiertes Routing, im Vergleich zu ‘Metrik® basierten Routing handelt.
Konkret bedeutet dies, dass ein selbst bestimmen kann, wie Datenverkehr

geroutet werden soll, sollte das iiber mindestens zwei Uplinks verfligen.

Wenn zwei Nachbarn eine [TCPl Verbindung aufgebaut haben, begin-
nen diese Informationen in Form von Nachrichten auszutauschen. Jede
Nachricht besteht aus einem Header, und dem tatséchlichen Inhalt. [Vgl. BELJ-
NUM 2002, S. 19 f.] Um eine Verbindung herzustellen, miissen sich Router
iiber eine ‘Open‘-Message verbinden. Diese wird direkt nach dem Aufbau der
[TCPI Verbindung ausgetauscht. [Vgl. BELINUM 2002, S. 20 f.]

Version | My AS | Hold time | Identifier | Parlen | Optional parameters
1 byte | 2 bytes | 2 bytes 4 bytes | 1 byte 0-255 bytes

Tabelle 2.1: Aufbau der ’Open’-Message
Quelle: [RFC4271 REKHTER, HARES und L12006] in Anlehnung an [BEIINUM
2002, S. 20]

Sollte die Open-Message erfolgreich vom Gegenstiick angenommen worden
sein, sendet dieser eine 'Keepalive’-Message zuriick. Anschliefend wird die
BGP-Routentabelle tiber 'Update’-Messages ausgetauscht. [Vgl. BEIINUM 2002,
S. 20]

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

UR length | Withdrawn routes | PA length | Path attributes | NLRI
2 bytes Variable 2 bytes Variable Variable

Tabelle 2.2: Aufbau der 'Update’-Message
Quelle: [RFC4271 REKHTER, HARES und L1 2006] in Anlehnung an [BEIINUM
2002, S. 20]

Durch die ‘Update‘-Message werden die eigentlichen Informationen iiber-
tragen. Hierdurch konnen neue Routen hinzugefiigt, oder alte Routen zurtick-
gezogen werden. Ein nicht optionales Attribute ist der ‘AS_PATH‘, welcher

beschreibt, iber welche bestimmte Prifixe zu erreichen sind.

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

[BGPFCommunities sind ein Mechanismus, mit welchem Netzwerkbetreiber
spezifische Gruppen oder Kategorien von Prifixen markieren kénnen. Die-
se Markierungen, als ,,Communities* bezeichnet, konnen verwendet werden,
um Routen zu identifizieren und zu beeinflussen, wie sie von anderen ASen
interpretiert werden. Durch die Verwendung von Communities kénnen Netz-
werkbetreiber das Routing auf feinere Weise steuern und anpassen, ohne die
Kernstruktur des BGPINetzwerks zu verandern. Die Manipulation von Routen
mittels Communities erfolgt, indem einem bestimmten Préfix eine oder
mehrere BGPICommunities zugewiesen werden. Andere konnen dann diese
Community-Markierungen verwenden, um spezifische Aktionen auszufiihren,

wie z.B.:

o Pfadwahl beeinflussen: Durch das Zuweisen von Communities zu be-
stimmten Prafixen konnen Netzwerkbetreiber festlegen, wie andere
ihre Routen interpretieren sollen. Dies kann dazu verwendet werden, den

bevorzugten Weg fiir den Datenverkehr zu beeinflussen.

o Traffic-Engineering: Netzwerkbetreiber kénnen Communities verwenden,
um den Datenverkehrsfluss zu steuern. Durch Markieren von Préafixen
konnen sie bestimmte dazu anleiten, den Datenverkehr auf bestimmten

Wegen zu leiten, um Netzwerkressourcen effizienter zu nutzen.

« Blackhole-Routing: Communities konnen dazu genutzt werden,
bestimmte Préfixe zu markieren und den Datenverkehr iiber Blackholes
zu lenken, um Angriffe oder Uberlastungen zu bewiltigen. Spezielle fiir
Blackholing wurde eine eigene Community definiert: 65535:666 [Vgl.
KING u. a. [2016]

« Routenfilterung: konnen Community-Markierungen verwenden, um
prizise Routenfilterung durchzufithren. Damit kénnen sie bestimmte
Routen von bestimmten Quellen oder fiir bestimmte Zwecke filtern oder

akzeptieren.

Die Verwendung von Communities ermoglicht eine flexiblere und zielge-
richtete Steuerung des Internet-Routings. Netzwerkbetreiber kénnen so gezielt
auf unterschiedliche Anforderungen reagieren und gleichzeitig die Integritat
und Stabilitit des BGPINetzwerks aufrechterhalten.

Kapitel 3

Architekur

Die Architektur des Route Injection Service besteht aus drei wesentlichen
Bestandteilen, welche entweder direkt verbunden sind oder mittels Hashicorp

Consul Daten austauschen konnen.

Abbildung 3.1: Route Injection Architektur

Quelle: Firmenintern

3.1. [AP] KAPITEL 3. ARCHITEKUR

3.1 [API

Die [APT] ist dafiir verantwortlich die Eingaben des Users, welche iiber die
Engine iibermittelt wurden zu tiberpriifen und zu validieren. Sind die Eingaben
nicht korrekt, so gibt die eine entsprechende Fehlermeldung zurtick. In der
Zukunft wird die [API] auch dafiir verantwortlich sein entsprechende Monitoring
Endpunkte zur Verfiigung zu stellen, sodass der allgemeine Status des Service

uberwacht werden kann.

3.2 Hashicorp Consul

Hashicorp Consul, im weiteren Verlauf nur ‘Consul* genannt, wird als Zwischen-
speicher fiir Routen und deren injizierte BGPFCommunities verwendet. Des

Weiteren konnen Injectoren hier Thren ‘Heartbeat® abspeichern.

3.3 Injector

Der Injector bezieht periodisch(alle 5 Sekunden) die in Consul gespeicherten
Routen. Sollte es hier eine Anderung gegeben haben, wird eine Konfigurations-
datei fir den Bird Routingdaemon neu erstellt. Anschliefend wird tiber das

'Bird Controlsocket” der Befehl zum Neuladen der Konfiguration gegeben.

3.4 Router

Als Router wird der Bird Routingdaemon eingesetzt. Dieser stellt eine [BGP
Session mit einem physischen Router her, welcher die von Bird zu Verfiigung
gestellten Router importiert und innerhalb des [BGPFNetzwerks weitergibt.

10

Kapitel 4

API Komponente

4.1 Aufgaben

Die [APIlist die Schnittstelle des Service und auflen stehenden Technologien wie
der Anexia Engine. Thre Hauptaufgabe besteht darin, eine strukturierte Inter-
aktionsmoglichkeit zu bieten, die es internen Benutzern iiber Systeme wie der
Anexia Engine ermoglicht, BGPIRouten mit zugehorigen BGPICommunities in
das Netzwerk zu injizieren. Dies geschieht durch die Annahme von JavaScript
Object Notation (ISONI)-Anfragen, die spezifische Informationen enthalten,
namlich TPv4- oder IPv6-Prifixe und die entsprechenden [BGPICommunities.
Die[API fiihrt eine umfassende Validierung der eingehenden Daten durch, um si-
cherzustellen, dass die bereitgestellten Informationen korrekt und im erwarteten
Format vorliegen. Diese Validierung umfasst die Uberpriifung der Richtigkeit
der IP-Adressbereiche sowie die syntaktische Korrektheit der zugeordneten
[BGPFCommunities. Durch diesen Schritt wird gewéhrleistet, dass nur giltige
Informationen in das System eingebracht werden. Die validierten Daten werden
anschliefend an Consul, tiber dessen eigene [API] iibermittelt. Die Daten werden

so abgelegt, dass der Injector einen erleichterten Zugriff hat.

11

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

4.2 Umsetzung

Da die Konzeption und Implementierung der [API] schon umfassend in der Pro-
jektarbeit T1000 erldutert wurde, wird auf eine Wiederholung dessen verzichtet.
In diesem Bericht wird lediglich die Implementierung des ‘Delete’-Endpunkts
dargestellt, da dieser aus zeitlichen Griinden nicht mehr in den ersten beiden
Praxisphase implementiert werden konnte, jedoch ein Grundbestandteil des

entwickelten Service ist.

Die Implementierung eines ‘Delete‘’-Endpunkts in der API, mittels des

Django Rest Frameworks, ermoglicht das Loschen von Routen aus dem System.

class BaseRouteViewSet (
CreateModelMixin,
ReadOnlyModelViewSet,

BaseRequestViewSet,

@action(detail=False, url_path=
)

def status(self, request, task_info_id):

route_object = get_object_or_404(

self.serializer_class.Meta.model, task_info_id=

task_info_id

)

propagate_status (route_object)

return super () .status (request, task_info_id)

Code Snippet 4.1: BaseRouteViewset Klasse

Der in Snippet 4.1 gezeigte Code stellt eine Mutterklasse dar, von welcher
sowohl der ‘Create’, als auch ‘Delete‘-Endpunkt erben. Durch diese Klasse wird
die Moglichkeit gegeben, von der Anexia Engine erwartete Endpunkte einfach
zu implementieren, ohne dass sich ein Entwickler mit den Feinheiten dessen
auseinandersetzen muss. Da hier die CreateModelMixin Klasse geerbt wird,
stellt sich das automatisch ein 'POST’-Requests fiir diesen Endpunkt zu

akzeptieren.

12

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

class DeleteRouteViewSet (BaseRouteViewSet):
queryset = DeleteRoute.objects.all()

serializer_class = DeleteRouteSerializer

def perform_create(self, serializer):
super () .perform_create(serializer)

delete_route(serializer.instance)

Code Snippet 4.2: DeleteRouteViewset Klasse

Die tatsachliche Implementierung fallt durch das Erben von der ‘Base-
RouteViewSet* Mutterklasse sehr simpel aus. Durch das Uberschreiben der
perform_create Methode, welche vom zur Verfiigung gestellt wird, kann
diese als Hook benutzt werden um eigenen Code ausfithren zu lassen. Mit der
Super Methode wird sichergestellt, dass die nicht tiberschriebene Ursprungs-
methode von perform_create ausgefithrt wird. Das erstellt dann einen
Datenbankeintrag mit den vom Nutzer eingegeben Werten. Vor dem Ende
des Kontextes der Methode wird noch eine weitere Methode delete route

aufgerufen.

def delete_route(instance):

consul_instance = prepare_consul (os.getenv(),
os.getenv ())

prefix = str(instance.prefix)

prefix_encoding = get_prefix_encoding(prefix)

consul_instance.kv.delete (
f

)

update_active_injectors (instance)

Code Snippet 4.3: delete route Methode

Hier findet nun das eigentliche Ubermitteln der Daten an Consul statt.

13

Kapitel 5

Injector Komponente

5.1 Aufgaben

Der Injector ist der zentrale Baustein des Route Injection Service, der die
Moglichkeit bietet, mittels [BGPl Communities, Routen in das Netzwerk zu

injizieren. Der Injector erfiillt dabei eine Reihe von wesentlichen Aufgaben:

Zuallererst ist der Injector fur die Konvertierung der von der [APIl empfan-
genen Routen in eine fiir den Router (Bird) verstandliche Konfigurationsdatei
verantwortlich. Diese Konvertierung ist von entscheidender Bedeutung, um
die Weiterleitung der Routen an den Router in einem kompatiblen Format
sicherzustellen. Wéahrend die Validierung der Prafixe und Communities von
der [APIl Komponente tibernommen wird, hat der Injector eine eigene Validie-
rung fiir Routen, welchen iiber den Emergency-Mode angegeben werden, da
hier die [API] Komponente tiberbriickt wird. Bei auftretenden Konflikten oder
Unstimmigkeiten kann der Injector angemessene Mafinahmen ergreifen, um
die Integritat der anderen Komponenten und schlussendlich des Netzwerks, zu
gewédhrleisten. Ein wichtiger Aspekt ist auch die aktive Kommunikation des
Injectors mit dem Router (Bird). Diese Kommunikation erfolgt, um die generier-
ten Konfigurationsdnderungen effektiv zu iibertragen und sicherzustellen, dass
die injizierten Routen nahtlos in das Routing-Protokoll des Routers integriert
werden. Schliellich stellt der Injector durch prazises loggen sicher, dass im
Falle eines Fehlers, oder im schlimmsten Fall, bei einem Absturz der Kompo-
nente, Ereignisse festgehalten werden. Zusammenfassend fungiert der Injector
als entscheidende Schnittstelle, die die Funktionen der [APIl und des Routers

miteinander verbindet. Mit seiner intelligenten Konvertierung und Verwaltung

14

5.1. AUFGABEN KAPITEL 5. INJECTOR KOMPONENTE

von Routen durch [BGP| Communities gewahrleistet er, dass die gewiinschten
Routing-Anderungen prizise und effizient im [BGPFNetzwerk implementiert

werden.

15

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2 Umsetzung

5.2.1

Generieren der Config Files fiir Bird

Fiir den einfachen Umgang mit Routen wurde fiir die routes Variable eine

Python Dataclass angelegt, welche das IP-Prifix, die IP-Version und eine Liste
der gesetzen BGPFCommunities enthélt.

@dataclass

class Route:

prefix: str

encode: str

communities: list[str]

def

def

def

def

def

__init__(self, prefix="", encode="", communities=[]):
self .prefix = prefix

self.encode = encode

self.communities = communities

__str__(self):

return f

decode_prefix(self):

self .prefix = self.prefix.replace(s)

encode_prefix(self):

self .prefix = self.prefix.replace())

get_communities (self):
communities = self.communities

return list(map(lambda com: com.replace(

communities))

Code Snippet 5.1: Python Dataclass fiir Routen Objekte

Neben den genannten Feldern, kann die Dataclass auch noch Methoden zur

verarbeitung der Felder, ahnlich wie eine normale Klasse beinhalten. Besonders

zu betonen ist hier die get_communities Methode, welche die Communities in

ein von Bird akzeptiertes Format umwandelt.

16

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Die in Consul gespeicherten Routen werden dann periodisch von Consul tiber
dessen eigene [API abgefragt. Hierfiir ist die parse_consul _values Methode

zustandig.

def parse_consul_values(values, watched_prefix) -> (list[Route
], list[Routel):
if not values:

return [1, []

(]
(]

v4d_routes

v6_routes

for entry in values:

route_entry = Route()
route_entry.prefix = entryl[].split(watched_prefix)
[1]
json_communities = entryl[].decode()
route_entry.communities = json.loads(json_communities) [
]
route_entry.encode, route_entry.prefix = route_entry.

prefix.split()

route_entry.decode_prefix ()

if route_entry.encode ==

v4_routes.append(route_entry)

elif route_entry.encode ==

v6_routes.append(route_entry)

return v4_routes, v6_routes

Code Snippet 5.2: parse_consul_values Methode

Im Laufe der Methode werden die abgefragten Eintrage in Routenobjekte
umgewandelt. Um herauszufinden um welche IP Version es sich bei der Route
handelt, wird der entsprechende Key des Pfades ausgelesen, da dieser die IP
Version mit im Namen tragt. Als Resultat gibt die Methode ein Tupel zuriick,
wobei eines die IPv4 Routen und das andere die IPv6 Routen sind. Diese
Aufteilung ist notwendig, da die in Debian 11 mitgelieferte Version von Bird
eine klare Auftrennung dieser fordert. Neuere Versionen von Bird kénnen auch
mit beiden IP Versionen gleichzeitig umgehen.

Durch die Auftrennung der beiden IP-Versionen, muss auch die Konfigurati-

onsdatei fiir Bird, zweimal generiert werden. Mit der Methode generate _bird files

17

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

werden Umgebungsvariablen geladen, welche fiir die Generierung der Konfigu-
ration benotigt werden. Neben diesen tibergibt die Methode auch die Routen

als Parameter weiter.

def generate_bird_files(v4_routes, v6_routes, pybird, pybird6):
gen = BirdConfigGenerator ()
click.echo()
gen.bird_config(

v4d_routes,

B

os.getenv (),
os.getenv (),
os.getenv (),
os.getenv (),

gen.bird_config/(

v6_routes,

os.getenv (),
os.getenv (),
os.getenv (),

os.getenv (),

pybird.commit_config()
pybird6.commit_config ()
click.echo()

Code Snippet 5.3: generate bird_ files Methode

18

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Die Methode bird_config, welche um eine gute Struktur zu wahren zu einer
gesonderten Datei und Klasse angehort, ruft die get_communities Methode
der Route Dataclass auf, um die Routen in einer von Bird lesbares Format
zu wandeln. Des Weiteren wird hier die tatsdchliche Konfiguration auf das

Dateisystem geschrieben.

def bird_config(
self,
unconverted_routes,
route_template,
config_path,
config_mame,
router_id=None,
local_as=None,
remote_as=None,
bgb_neighbor=None,

description=None,

converted_routes = []
for route in unconverted_routes:
route.communities = route.get_communities ()

converted_routes.append (route)

target_file = self.__prepare_config_path(config_path,
config_name)
self.__write_config_file(

target_file,

converted_routes,

route_template,

router_id,

local_as,

remote_as,

bgb_neighbor,

description,

Code Snippet 5.4: bird__config Methode

Um die Routen an den Bird Routing Daemon tibermitteln zu konnen, miissen
diese erst in eine fiir Bird verstédndliche Konfigurationsdatei umgewandelt
werden. Zur Realisierung wird die Jinja2 Templating Engine verwendet, da
diese die Moglichkeit schafft, alle Eigenschaften des Injectors dynamisch zu
konfigurieren. Somit kann der tatsdchliche Code aller Injectoren identisch sein,
und Variable Eigenschaften wie z.B. die router_id oder der BGP}Peering

19

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Nachbar konnen beim Ausrollen festgelegt werden.

protocol static injected_routes {

{% for route in routes %}
route {{route.prefix}} via {{router_idl}} {
{% for community in route.communities %}
bgp_community.add (({{communityl}}));
{% endfor %}
3

{% endfor %}

protocol bgp Route_Injection {
description "{{description}}";
local as {{local_asl}};
neighbor {{bgp_neighbor}} as {{remote_asl}};
next hop self;
export filter {
if proto = "injected_routes" then accept;
reject;

};

Code Snippet 5.5: Jinja Template zur Konfigurationsgenerierung

In diesem Template finden sich einige Variablen

routes (Python Liste mit Routen Elementen)
« router_id (IPv4 Addresse des Injectors)

e local_as (Lokales [ASN])

« remote_as (Nachbar [ASN))

e bgp_neighbor (Nachbar [BGPIRouter IPv4 Adresse)

description (Beschreibung des Protokolls)

wieder, welche entweder im Code oder dynamisch beim Ausrollen, also
ausrollen des Injectors gesetzt werden miissen. Jinja kann auch mit Listen und
verschachtelten Listen umgehen, was bei der routes Variable zum Einsatz
kommt. Jinja kann dann tiber die Liste der Routenobjekte iterieren und fiir jede
Route einen gesonderten Eintrag mit den jeweiligen BGPFCommunities erstel-

len. Folglich ein Beispiel einer moglichen Konfiguration. ASNs und router_ids

20

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

konnen hier entweder als Umgebungsvariable oder von einer .env Datei gela-
den werden. Die Routen werden dynamisch wéhrend der Programmlaufzeit

angegeben, konvertiert und konfiguriert.

protocol static injected_routes {
route 1.1.1.1/32 via 172.20.0.5 {
bgp_community.add ((47147,3200));
bgp_community.add ((12345,12345)) ;
}s

protocol bgp Route_Injection {

description "ANEXIA Route Injection v4";
local as 64701;
neighbor 172.20.0.6 as 65001;

next hop self;

export filter {
if proto = "injected_routes" then accept;
reject;

};

Code Snippet 5.6: Beispiel einer Konfigurationsdatei

21

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Somit konnen nun Konfigurationsdateien fiir Bird erstellt werden. Sollte
jedoch wahrend dem Rendern des Templates ein Fehler auftreten, kann es
passieren, dass eine inkorrekte oder gar keine Konfigurationsdatei generiert
wird. Dies konnte einen negativen Einfluss auf die Operation des Service haben
und muss somit verhindert werden.

Um das Problem zu verhindern, wird die Konfiguration erst in eine temporare
Datei geschrieben. Wenn dies erfolgreich war, dann wird die temporére Datei
umbenannt und in das echte Konfigurationsverzeichnis geschoben. Da hier eine
Datei iiberschrieben statt angepasst wird, gehen Dateiberechtigungen verloren

und miissen neu gesetzt werden.

def __write_config_file(
self,
target_path,
routes,
template,
router_id=None,
local_as=None,
remote_as=None,
bgp_neighbor=None,

description=None,

template = self.env.get_template(template)
with NamedTemporaryFile(delete=False, mode=) as conf:
conf.write(
template.render (
routes=routes,
router_id=router_id,
local_as=local_as,
remote_as=remote_as,
bgp_neighbor=bgp_neighbor,

description=description,

try:
os.chmod (conf .name, 00660)
shutil .move (conf.name, target_path)
except Exception as e:
echo (e)

os.remove (conf .name)

Code Snippet 5.7: _ write_config_file Methode

22

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2.2 Status der Routen von Bird abfragen
Evaluation der pybird Bibliothek

Da die entwickelte[APIliiber einen Status Endpunkt verfiigt, welcher letztendlich
von der Anexia Engine abgerufen wird, muss auch der Injektor die benotigten
Statusinformationen zur Verfiigung stellen. Hierfiir wurde evaluiert, welche
Python Bibliothek sich am besten zu diesem Zwecke eignet.

Die Entscheidung fiir die Verwendung der ‘pybird‘ Bibliothek wurde aus

folgenden Griinden getroffen:

1. Funktionalitat: Die ‘pybird‘ Bibliothek wurde speziell dafiir entwickelt

mit dem Bird Routing Daemon zu interagieren.

2. Direkte Socket Anbindung: ‘pybird‘ unterstiitzt die direkte Kommunika-
tion mit dem Bird Control Socket, was eine erleichterte Kommunikation

ermoglicht.

3. Aktualisierung und Wartung: Da die ‘pybird‘ Bibliothek aktiv gepflegt
wird, kann sichergestellt werden, dass sie auch mit zukiinftigen Versionen
des Bird Routing Daemons kompatibel sein wird. Des Weiteren kann so
auch sichergestellt werden, dass das Route Injection Project sich auch in

der Zukunft noch auf diese Bibliothek verlassen kann.

4. Open-Source: Durch den offenen Quellcode, kann sichergestellt werden,
dass der Code keine Malware/Spyware enthélt. Sollte es notig sein, kann
der Quellcode der Bibliothek geforked, und auf die Bediirfnisse der Anexia

angepasst werden.

Uber die Methode get_routes der PyBird Klasse kénnen die von Bird
iibernommenen Routen abgefragt werden. Als Parameter kann das Prafix der
Route angegeben werden, sodass die Ausgabe auf nur dieses Prafix beschrinkt

wird. Pybird gibt die Ausgabe dann in folgendem Format zurtick:

[{’ community’: °’65535:65281°,
’prefix’: ’1.2.3.4/32°,
’peer’: ’172.20.0.3°,
’interface’: ’ethO’,
’source’: ’injected_routes’,
’time’: ’13:37:47°}]

Code Snippet 5.8: Unverarbeitete Ausgabe von Pybird

23

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Von dieser Ausgabe wird jedoch nur der Teil, welcher die Communities

betrifft benétigt. Folglich muss die Ausgabe noch im Code angepasst werden.

def respond_state_to_consul(
consul: ckv, pybird: PyBird, route: Route, injector_id: str
) -> None:
state = pybird.get_routes(prefix=route.prefix)
route.encode_prefix ()

try:

actual_communities state [0] . get ()).
split()
except IndexError:
actual_communities = []
expected_communities = list(route.communities)
state = get_bird_communities(expected_communities,
actual_communities)
state = json.dumps ({ : statel)
try:
consul .kv.put(
f
>
state,
)
except requests.exceptions.ConnectionError:
click.echo()
return
route.decode_prefix ()
click.echo (f

)

Code Snippet 5.9: respond_state to consul Methode

Um den Status zu bestimmen, werden die Communities, welche im Routen-
objekt abgespeichert sind, mit den Communities welche von Bird zurtickgegeben
wurde verglichen. Stimmen diese iiberein, so kann davon ausgegangen werden,
dass Bird alle Communities akzeptiert hat und an den Nachbar Router iibermit-
teln kann. Sollte es Abweichungen zwischen den Communities geben, bedeutet
dies, dass noch nicht alle Communities von Bird akzeptiert wurden. Als Folge
dessen werden auch nur die aktuell in Bird eingetragen Communities zuriick
an Consul tibermittelt. Die [APII Komponente des Route Injection Service fragt
dann den in Consul eingetragenen Status ab und bestimmt dann selbst, ob
der gesamte Prozess erfolgreich, noch im Gange oder fehlerhaft war. Dies wird

dann von der Anexia Engine interpretiert und ist fiir den Nutzer sichtbar.

24

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2.3 Realisierung des Heartbeats

Um sicherzustellen, dass die API den aktuellen Status der online verfiigharen
Injektoren erfassen kann, verwenden die Injektoren ein sogenanntes ‘Heartbeat'-
System, das seine Aktivitdt in Consul signalisiert. Dieses Heartbeat wird in
Form eines Wertes (Value) in Consul gemeldet. Dieser Prozess ermoglicht es der
API, den Zustand der einzelnen Injektoren zu iiberwachen und sicherzustellen,
dass sie ordnungsgemafl funktionieren.

Jeder Injektor meldet seinen Status durch das Schreiben eines Wertes
(Value) in einen spezifischen Schliissel-Wert-Pfad in Consul. Dieser Pfad lautet:
vl/state/<injector_id>/heartbeat. Hierbei steht <injector_id> fiir die
eindeutige Kennung des Injektors. Der Wert (Value), der in den oben genannten
Schliissel-Wert-Pfad geschrieben wird, hat den Inhalt ‘{}‘, was auf ein leeres
JSON-Objekt hinweist. Dieses leere Objekt dient als Platzhalter und signalisiert
der API, dass der Injektor aktiv ist und seinen Heartbeat meldet. Der gemeldete
Wert (Value) hat eine Time to live (T'T'L)) von 10 Sekunden. Dies bedeutet,
dass nachdem der Injektor seinen Heartbeat gemeldet hat, der Wert fiir 10
Sekunden in Consul bestehen bleibt. Wenn innerhalb dieses Zeitraums keine
weiteren Heartbeats gemeldet werden, wird der Wert automatisch aus Consul
entfernt.

Durch das Heartbeat-System kann die API regelméflig aktualisierte Infor-

mationen erhalten, welche Injektoren online und funktionsfahig sind.

Um den Heartbeat im Programmcode moglichst modular zu realisieren

wurde hierfiir eine eigene Methode erstellt.

def create_heartbeat (consul, injector_id):
session_id = consul.session.create(behavior= , ttl
=10)
consul .kv.put(
key=£f , value= s
acquire=session_id
)

return session_id

Code Snippet 5.10: create heartbeat Methode

Nach dem initialen Anlegen des Heartbeateintrages wird dieser alle fiinf

Sekunden erneuert und sicherzustellen, dass die[TTT] des Eintrages nicht ablauft.

25

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2.4 Emergency-Mode

Um sicherzustellen, dass der Route Injection Service auch in Szenarien von
Netzwerkproblemen zwischen der [APIl und den Injektoren effizient arbeiten
kann, sei es fiir das Hinzufiigen, Andern oder Léschen von Routen, wurde eine
mafBgebliche Funktion eingefiihrt, die als Emergency-Mode, bzw. Notfallmodus
bekannt ist. Diese Funktion wurde entwickelt, um direkten Zugriff auf die Injek-
toren zu ermoéglichen und Routenverwaltungsvorgéange tiber die Kommandozeile
durchzufiihren. Der Emergency-Mode fungiert als eine Art Sicherheitsvorkeh-
rung, die sicherstellt, dass die Verfiigbarkeit und Funktionalitat des Dienstes
aufrechterhalten werden kann, selbst wenn die iibliche Kommunikation zwischen
der [API und den Injektoren temporar gestort ist. Der Namensteil ‘Mode* lasst
vermuten, dass es sich um einen tatsachlichen Operationsmodus handelt. Dies
ist allerdings nicht ganz korrekt. Der Emergency-Mode ist eher als Funktiona-
litatserweiterung zu sehen und kann selbst dann aktiviert werden, wenn die
Kommunikation zwischen [APIl und Injector intakt ist. Dies ist insbesondere
niitzlich, wenn dringende Anderungen an den Routingeinstellungen erforderlich
sind, die nicht auf die normale Kommunikation warten konnen. Um Zugriff auf
die Kommandozeile zu erhalten, muss ein Nutzer sich iiber Secure Shell (SSH))
auf den Injector einloggen. Firmeninterne Automatismen stellen sicher, dass
nur befugte Nutzer Zugriff auf das System haben.

Zur Gewahrleistung der Integritat des Service miissen die vom Nutzer
eingegebene Routen validiert und auf Thre Korrektheit iberpriift werden. In
der Regel wird dies von der [APIl iibernommen, jedoch werden im Notfallmodus
die Routen direkt in den Injector eingespeist, und die Validierung der [API] wird

umgangen. Daher muss diese vom Injector selbst durchgefithrt werden.

26

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

def validate_route(prefix: str, communities=None) -> Route:
route = Route ()
try:
route.prefix = str(ipaddress.ip_network(prefix))
except ValueError:
raise click.exceptions.BadParameter (
)
if in route.prefix:
route.encode =
else:
route.encode =
if communities:
communities = communities.split()
for community in communities:
community_parts = community.split()
if len(community_parts) != 2:
raise click.exceptions.BadParameter (
f

try:
if not int(community_parts[0]) in range (1,
65535) or not int(
community_parts [1]
) in range (1, 65535):
raise click.exceptions.BadParameter (
£

)
except ValueError:
raise click.exceptions.BadParameter (
£

)

route.communities = list(communities)

return route

Code Snippet 5.11: Methode zur Validierung von Routen

Der Zweck ist, BGP-Routen, primér in Bezug auf deren Préfixe und Com-
munities zu validieren. Die Methode akzeptiert ein Préfix als obligatorisches
Argument und optional eine Liste von Communities als Zeichenfolge. Das Haupt-
ziel dieser Funktion ist es, sicherzustellen, dass die angegebenen Informationen
den [BGPFAnforderungen entsprechen und giiltig sind.

27

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Zuerst wird ein neues Routenobjekt erstellt, das als Container fiir die
validierten Daten dient. Die Funktion versucht dann, den iibergebenen Prafix
als ITP-Netzwerk zu interpretieren. Bei einer ungiiltigen Eingabe wird eine
‘BadParameter‘-Exception ausgelost.

Das Préfix wird analysiert, um festzustellen, ob es sich um ein IPv4- oder
[Pv6-Prifix handelt. Dies wird im ‘encode‘-Attribut des Routenobjekts ver-
merkt. Im Fall von iibergebenen Communities werden diese analysiert und
validiert. Jede Community wird auf ihre Struktur tiberprift, und die einzelnen
Teile werden auf ihre Giiltigkeit im Hinblick auf [ASNl und Wertigkeit gepruft.
Fehlerhafte Communities fithren zu entsprechenden ‘BadParameter‘-Exceptions.

Abschlieend werden die validierten Informationen, einschlieSlich Prafix und
Communities, im Routenobjekt gespeichert. Die Funktion gibt dieses Objekt
zurlick, das nun die validierten Daten enthélt.

Zur Vereinfachung der Interaktionen mit der Kommandozeile wird die
Bibliothek ‘click® verwendet. Durch diese konnen Exceptions leicht an den
Benutzer iibermittelt werden, und Tests konnen einfach gestaltet werden.

Der Operator welcher letztendlich den Emergency Mode bedienen wird, hat

zwei Eingabemoglichkeiten:

o add-route <prefix> <communities>

o delete-route <prefix>

Wobei ‘<> fiir Platzhalter des entsprechenden Parameters stehen. Eine
Moglichkeit, schon existierende Routen zu updaten bietet der Emergency Mode
nicht. Routen welche tiber den Emergency Mode hinzugefiigt wurde, haben
immer Vorrang gegeniiber Routen, welche iiber Consul geladen wurden. Eine
weitere Anforderung an den Emergency Mode war, dass Routen auch nach
Reboot des Injectors erhalten bleiben. Dies forderte, dass Routen auf einer
Weise im Dateisystem erhalten werden. Um dies zu Realisieren bestiinde die
Moglichkeit eine Datenbank wie ‘sqlite’ zu nutzen. Eine einfachere Losung
dieses Problems war es jedoch, die Routen als in eine Datei zu schreiben.
Die schon bei den Konfigurationsdateien fiir Bird, wurden IPv4 und IPv6 aus
demselben Grund getrennt.

Um die Konsistenz und Integritat dieser Dateien, auch ‘Emergency Files’
genannt zu gewahrleisten, wurde ein Filelock gesetzt. Zur Vermeidung des
Dirty read Problems, welches in der Vorlesung Datenbanken erlautert wurde,

wurde das Filelock sowohl fiir Schreib- als auch fiir Lesevorgange gesetzt. So

28

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

kann ein zweiter Prozess das Emergency File erst lesen, wenn der erste Prozess
den Schreibvorgang abgeschlossen hat. Dies dient nicht nur zur Mehrbenut-
zersynchronisation von mehreren Menschen, sondern hauptséchlich, dass der
Hauptprozess nicht versucht das Emergency File zu lesen, wahrend ein Operator
mittels des Emergency Mode Anderungen vornimmt.

Da Python, beziechungsweise die benutze Bibliothek Probleme da-
mit hatte verschachtelte zu de- und enkodieren, wurde eine weitere

Dataclass angelegt. Diese Dataclass dient nur als Container, um eine Liste an

Routenobjekten anzulegen.

@dataclass_json
Q@dataclass
class RouteContainer:

routes: list [Route]

def __init__(self, routes):

self.routes = routes

def __str__(self):

return f

Code Snippet 5.12: Route Container Dataclass

Zu Beginn des Programmstarts werden die Pfade der Lockfiles und Emer-

gency Files innerhalb des Docker Containers festgelegt:

emergency_file_v4

emergency_file_v6

lock _file_v4

lock _file_v6

Code Snippet 5.13: Deklaration der Dateipfade

29

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Die Methode welche beim Aufruf von add-route iiber die Kommandozeile

aufgerufen wird lésst sich wie folgt darstellen:

@click.argument ()
@click.argument ()
@cli.command ()
def add_route(prefix, communities):
route = validate_route(prefix, communities)
emergency_file = emergency_file_v4
lockfile = FileLock(lock_file_v4)
if route.encode ==
emergency_file = emergency_file_v6
lockfile = FileLock(lock_file_v6)
with lockfile.acquire():

current_routes = read_emergency_file(emergency_file)
new_routes = find_and_remove_in_list (current_routes,
route)

new_routes.append (route)
route_container = RouteContainer (new_routes)

write_emergency_file(route_container, emergency_file)

Code Snippet 5.14: add_ route Methode

Zuerst wird iiber den erwahnten Validierungsprozess sichergestellt, dass
die vom Nutzer eingegeben Route eine valide Route ist. Uber eine if Abfrage
wird geprift, ob das Prafix der eingegebenen Route ein IPv6 Prafix ist. Ist
das der Fall, dann wird das entsprechende Emergency File und Lockfile einer
Variablen zugewiesen. Anschliefend wird das Filelock auf das entsprechende
Emergency File gesetzt, um sicherzustellen, dass keine weiteren Prozesse auf
das File zugreifen konnen. Im Folgenden werden die schon im Emergency File
enthaltenen Routen mit den neu hinzugefiigten verglichen. Sollte eine Route
hinzugefiigt werden, wessen Préfix schon im aktuellen Emergency File enthalten

ist, wird diese iiber die find_and_remove_in_list entfernt.

def find_and_remove_in_list(route_list: list, list_element:
Route) :
for element in route_list:
if element.prefix == list_element.prefix:
route_list.remove (element)

return route_list

Code Snippet 5.15: find _and remove in_list Methode

Die neue Route wird danach der Liste von Routen hinzugefiigt, und tiber die
RouteContainer Dataclass wieder zu einer verschachtelten [JSON| konvertiert.

30

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Zum Loschen von Routen aus den Emergency Files, gibt es die delete_route
Methode, welche sich mafigeblich dadurch unterscheidet, dass sie keine [BGP]
Communities als Parameter bendtigt, sondern lediglich das Routenprafix. Infol-
gedessen, fehlt in dieser Methode auch der Teil, welcher die neue Route der
Routenliste hinzufiigt, da hier nur die Route entfernt werden muss.

Da das Lesen und Schreiben der Files mehrmals im Programmcode geschieht,
wurde hierfiir jeweils eine Methode geschrieben um Codeduplizierung méglichst

zu vermeiden und das Don’t repeat yourself (DRY]) Prinzip einzuhalten.

def read_emergency_file(emergency_route_file: str) -> list:
if not os.path.exists(emergency_route_file):
return []
with open(emergency_route_file,) as emergency_route:
json_routes = emergency_route.read()
routes_from_file = RouteContainer.from_json(json_routes
) .routes

return routes_from_file

Code Snippet 5.16: read__emergency__file Methode

def write_emergency_file(routes: RouteContainer,
emergency_route_file: str):
with NamedTemporaryFile (delete=False, mode=) as
tmp_emergency_route_file:
tmp_emergency_route_file.write(routes.to_json())
try:
shutil .move (tmp_emergency_route_file.name,
emergency_route_file)
except Exception as e:
click.echo(e)

os.remove (tmp_emergency_route_file.name)

Code Snippet 5.17: write emergency file Methode

31

5.3. TESTEN KAPITEL 5. INJECTOR KOMPONENTE

5.3 Testen

32

Kapitel 6

Staging Umgebung

6.1 Planung

6.2 Umsetzung

33

Kapitel 7

Fazit

34

Literatur

BewunNuM, Iljitsch van [2002]. Building Reliable Networks with the Border
Gateway Protocol. O'Reilly [siehe S. [6] [7].

KiNG, Thomas u.a. [Okt. 2016]. BLACKHOLE Commaunity. RFC 7999. poTr:
10.17487/RFC7999. URL: https://www.rfc-editor.org/info/rfc7999

[siehe S. [§].

REKHTER, Yakov, Susan HARES und Tony LI [Jan. 2006]. A Border Gateway
Protocol 4 (BGP-4). RFC 4271. po1: 10 . 17487 /RFC4271. URL: https :
//www . rfc-editor.org/info/rfc4271 [siehe S. 6] [7].

SCHOCH, Leon [Okt. 2022]. API fiir Route Injection [siehe S. [3| [4].

35

https://doi.org/10.17487/RFC7999
https://www.rfc-editor.org/info/rfc7999
https://doi.org/10.17487/RFC4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Liste der Code Snippets
	Akürzungsverzeichnis
	1 Einleitung
	2 Grundlagen
	2.1 Einführung in die Problematik
	2.2 Technologie Selektion
	2.2.1 Django Rest Framework
	2.2.2 Hashicorp Consul
	2.2.3 Docker
	2.2.4 Bird

	2.3 Stand der Technik

	3 Architekur
	3.1 API
	3.2 Hashicorp Consul
	3.3 Injector
	3.4 Router

	4 API Komponente
	4.1 Aufgaben
	4.2 Umsetzung

	5 Injector Komponente
	5.1 Aufgaben
	5.2 Umsetzung
	5.2.1 Generieren der Config Files für Bird
	5.2.2 Status der Routen von Bird abfragen
	5.2.3 Realisierung des Heartbeats
	5.2.4 Emergency-Mode

	5.3 Testen

	6 Staging Umgebung
	6.1 Planung
	6.2 Umsetzung

	7 Fazit
	Index
	Literaturverzeichnis
	Anhang

