
Route Injection

Projekt T3_2000

für die Prüfung zum

Bachelor of Science

des Studienganges Informationstechnik

an der

Dualen Hochschule Baden-Württemberg Karlsruhe

von

Leon Louis Schoch

Abgabedatum 18. September 2023

Bearbeitungszeitraum 27 Wochen
Matrikelnummer 1015290
Kurs TINF21B5
Ausbildungsfirma Anexia Deutschland GmbH

Karlsruhe
Betreuer der Ausbildungsfirma Stephan Peijnik-Steinwender (B.Sc.)
Gutachter der Studienakademie Prof. Dr. Markus Strand

Erklärung

Ich versichere hiermit, dass ich meine Projekt T3_2000 mit dem Thema:
Route Injection selbstständig verfasst und keine anderen als die angege-
benen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass
die eingereichte elektronische Fassung mit der gedruckten Fassung überein-
stimmt.

Ort, Datum Unterschrift

Sperrvermerk

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Auszügen Personen
außerhalb des Prüfungsprozesses und des Evaluationsverfahrens zugänglich
gemacht werden, sofern keine anderslautende Genehmigung vom Dualen
Partner vorliegt.

Zusammenfassung

Ein Distributed Denial of Service (DDoS)-Angriff kann eine starke Auslastung
der betroffenen Systeme verursachen. Dies kann einen Absturz zur Folge haben,
oder den Zugriff auf die Systeme verhindern. Um dieses Problem zu lösen
wurde der Route Injection Service entwickelt, mit welchem ein Nutzer in der
Lage ist, Netzwerkroute über Border Gateway Protocol (BGP)-Communities
zu manipulieren. Ein DDoS-Angriff kann daher in ein Blackhole geroutet, und
eine Belastung der Zielsysteme verhindert werden.

A DDoS-Attack can cause a high load on the attacked systems. As a result, the
systems might be inaccessible or crash. To solve this problem, we developed the
route injection service, which enables a user to manipulate network routes via
BGP-Communities. A DDoS-Attack can then be routed into a blackhole, and a
strain on the target systems can be avoided.

Inhaltsverzeichnis

Abbildungsverzeichnis III

Tabellenverzeichnis IV

Liste der Code Snippets V

Akürzungsverzeichnis VI

1 Einleitung 1

2 Grundlagen 3
2.1 Einführung in die Problematik 3
2.2 Technologie Selektion . 4

2.2.1 Django Rest Framework 4
2.2.2 Hashicorp Consul . 4
2.2.3 Docker . 4
2.2.4 Bird . 4

2.3 Stand der Technik . 6

3 Architekur 9
3.1 Application Programming Interface (API) 10
3.2 Hashicorp Consul . 10
3.3 Injector . 10
3.4 Router . 10

4 API Komponente 11
4.1 Aufgaben . 11
4.2 Umsetzung . 12

5 Injector Komponente 14
5.1 Aufgaben . 14

I

INHALTSVERZEICHNIS INHALTSVERZEICHNIS

5.2 Umsetzung . 16
5.2.1 Generieren der Config Files für Bird 16
5.2.2 Status der Routen von Bird abfragen 23
5.2.3 Realisierung des Heartbeats 25
5.2.4 Emergency-Mode . 26

5.3 Testen . 32

6 Staging Umgebung 33
6.1 Planung . 33
6.2 Umsetzung . 33

7 Fazit 34

Index 35

Literaturverzeichnis 35

Anhang 35

II

Abbildungsverzeichnis

3.1 Route Injection Architektur . 9

III

Tabellenverzeichnis

2.1 Aufbau der ’Open’-Message . 6
2.2 Aufbau der ’Update’-Message 7

IV

Liste der Code Snippets

4.1 BaseRouteViewset Klasse . 12
4.2 DeleteRouteViewset Klasse . 13
4.3 delete_route Methode . 13
5.1 Python Dataclass für Routen Objekte 16
5.2 parse_consul_values Methode 17
5.3 generate_bird_files Methode 18
5.4 bird_config Methode . 19
5.5 Jinja Template zur Konfigurationsgenerierung 20
5.6 Beispiel einer Konfigurationsdatei 21
5.7 __write_config_file Methode 22
5.8 Unverarbeitete Ausgabe von Pybird 23
5.9 respond_state_to_consul Methode 24
5.10 create_heartbeat Methode . 25
5.11 Methode zur Validierung von Routen 27
5.12 Route Container Dataclass . 29
5.13 Deklaration der Dateipfade . 29
5.14 add_route Methode . 30
5.15 find_and_remove_in_list Methode 30
5.16 read_emergency_file Methode 31
5.17 write_emergency_file Methode 31

V

Abkürzungsverzeichnis

API Application Programming Interface I

DRF Django Rest Framework . 4

REST Representational State Transfer 4

BGP Border Gateway Protocol . I

DDoS Distributed Denial of Service I

TTL Time to live . 25

SQL Structured Query Language 4

AS Autonome Systeme . 1

VM Virtuelle Maschine . 4

TCP Transmission Control Protocol 6

RIP Routing Information Protocol 6

OSPF Open Shortest Path First . 6

ASN Autonome System Nummer 6

JSON JavaScript Object Notation 11

SSH Secure Shell . 26

TTL Time to live . 25

DRY Don’t repeat yourself . 31

VI

Kapitel 1

Einleitung

Die zunehmende Abhängigkeit von digitalen Kommunikationsnetzwerken und
die kontinuierliche Weiterentwicklung der globalen Infrastruktur haben zu einer
signifikanten Steigerung des Datenverkehrs im Internet geführt. Während diese
Fortschritte zahlreiche Vorteile für die Gesellschaft mit sich bringen, eröffnen
sie auch neue Herausforderungen im Hinblick auf die Sicherheit und Stabilität
des Netzwerkbetriebs. In diesem Zusammenhang gewinnt die Fähigkeit, den
Datenverkehr effektiv zu leiten und gleichzeitig gegen potenzielle Bedrohun-
gen zu schützen, zunehmend an Bedeutung. Das BGP, als das fundamentalste
Routing-Protokoll im Internet, spielt eine kritische Rolle bei der Bestimmung der
optimalen Routen für den Datenverkehr zwischen Autonomen Systemen (ASen).
Allerdings hat die BGP-Protokollsuite bisher nur begrenzte Möglichkeiten zur
gezielten Beeinflussung des Datenverkehrs in Ausnahmesituationen oder bei
Sicherheitsvorfällen geboten. Eine solche Ausnahmesituation tritt beispielswei-
se auf, wenn ein Netzwerkressourcen-Engpass aufweist oder wenn bösartige
Akteure versuchen, den Datenverkehr abzufangen oder zu manipulieren. Die
vorliegende Forschung widmet sich daher der Entwicklung eines innovativen
Ansatzes, der es ermöglicht, Internet-Routen über BGP gezielt in sogenannte
„Blackholes“zu lenken. Dieses Konzept zielt darauf ab, den Datenverkehr von
bestimmten Quellen oder zu bestimmten Zielen hinzuleiten, indem die betref-
fenden Routen im Netzwerk auf Blackholes abgebildet werden. Diese Blackholes
repräsentieren Pfade im Netzwerk, die keinen tatsächlichen Datenaustausch
ermöglichen, sondern den Verkehr effektiv abfangen und isolieren. Durch die
Einrichtung dieser Blackholes wird eine maßgeschneiderte Methode zur Vertei-
digung gegen DDoS-Angriffe sowie zur effizienten Nutzung von Ressourcen in
Überlastsituationen geschaffen. Die Motivation für dieses Projekt liegt darin,

1

KAPITEL 1. EINLEITUNG

die Flexibilität und die Sicherheitsaspekte von BGP-Routings zu erweitern, um
den heutigen Anforderungen an die Netzwerksicherheit und -stabilität gerecht
zu werden. Durch die Schaffung eines Mechanismus zur Blackhole-Routing
kann das Risiko von Datenverkehrsumleitung durch bösartige Einflüsse mini-
miert und die Möglichkeit zur gezielten Netzwerkressourcenlenkung maximiert
werden. Die Ergebnisse dieses Projekts haben das Potenzial, die bestehenden
Ansätze zur Netzwerkverwaltung und -sicherheit zu erweitern und somit einen
bedeutenden Beitrag zur Aufrechterhaltung der Integrität und Effizienz globaler
Kommunikationsnetzwerke zu leisten.

2

Kapitel 2

Grundlagen

2.1 Einführung in die Problematik

Um im Falle eines DDoS Angriffs schnell reagieren zu können, muss es eine
bequeme und einfache Möglichkeit geben, Routen zu manipulieren. Hierfür
wurde das Projekt Remote Triggered Blackholing gestartet. Im Falle eines DDoS-
Angriffs könnten somit IP Präfixe des Angreifers gezielt in ein Blackhole geroutet
werden. Eine Belastung der Zielsysteme könnte somit verhindert werden, da
die boshaften Pakete des Angreifers somit nicht beim Zielsystem ankommen
würden, sondern in das schwarze Loch (Blackhole) weitergeleitet werden. Um die
Routen in Routern manipulieren zu können, müssen diese über Injektoren in die
Router injiziert werden. Im Verlaufe dieser Projektarbeit wird die Entwicklung
der Injektoren Komponente und der Aufbau einer Staging(Testing) Umgebung
genauer dargelegt. Der Aufbau und die Entwicklung der API Komponente wurde
bereits zu einem großteil in der T1000 erläutert, jedoch wurde im Rahmen der
T2000 diese um einen Delete-Endpunkt erweitert. [Schoch 2022]

3

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

2.2 Technologie Selektion

2.2.1 Django Rest Framework

„Django ist ein Web-Framework, dessen Ziel es ist, die Entwicklung von
Web Applikationen schnell, einfach und übersichtlich zu machen. Das Djan-
go Representational State Transfer (REST) Framework, hier nachfolgend als
Django Rest Framework (DRF) bezeichnet, ist ein REST Framework welches
auf Django basiert. Mit DRF lassen sich REST-ful APIs schnell und einfach
gestalten. Hierfür bietet Django eine Reihe an vorgefertigten Hilfestellung an,
welche im Verlaufe dieser Projektarbeit näher erläutert werden. Datenbank-
modelle werden hier einfach programmatisch deklariert und anschließend von
Django automatisch verwaltet. Über Objekte können somit einzelne Werte aus
der Datenbank entnommen werden, ohne sich mühsam mit Structured Query
Language (SQL) Queries auseinandersetzen zu müssen. Sowohl Django als auch
DRF basieren auf der Programmiersprache Python.“ [Vgl. Schoch 2022, S. 8]

2.2.2 Hashicorp Consul

„Consul, entwickelt von Hashicorp, ist eine Netzwerk Service Lösung, welche eine
sichere Kommunikation zwischen Services und Applikation erlaubt. Consul kann
sowohl redundant mit mehreren Nodes, als auch standalone genutzt werden. Für
diese Projektarbeit, wird eine standalone Lösung eingesetzt und es wird lediglich
die Key-Value Store Funktion genutzt. Mit dieser Funktion können Key-Value
[. . .] Paare über das Netzwerk in Consul gespeichert werden.“ [Schoch 2022]

2.2.3 Docker

Docker ist Platform zur Containerisierung von Anwendungen. Hierdurch wird
die Möglichkeit geschaffen eine isoliertes und leichtgewichtige Umgebung zu
schaffen, welche sonst lediglich mittels Virtuellen Maschinen (VMs) möglich
wäre. Durch Docker wird auf produktiven System durch die zusätzliche Iso-
lationsschicht der Containerisierung eine weitere Sicherheitsstufe hinzugefügt,
welche potenziellen Angreifern den Zugriff auf das Hostsystem erschwert.

2.2.4 Bird

Der Bird Internet Routing Daemon (Bird) ist eine Open-Source-Routing-
Software, die als Router fungiert. Bird implementiert unter anderem BGP,

4

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

um Routing-Informationen zwischen Routern auszutauschen und optimale
Routenentscheidungen zu treffen. Bird arbeitet neben anderen BGP-Routern,
um BGP-Sessions aufzubauen, Routing-Updates auszutauschen und Routing-
Informationen zu speichern. Bird kann BGP-Routen exportieren und an andere
Router weitergeben, indem es BGP-‘Update‘-Messages verwendet und Exportre-
geln in seiner Konfigurationsdatei folgt. Diese Regeln definieren, welche Routen
exportiert werden sollen und können durch Filter und Richtlinien gesteuert
werden. Durch den Export von BGP-Routen ermöglicht Bird eine effiziente
und zuverlässige Kommunikation und Weiterleitung in großen Netzwerken.

5

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

2.3 Stand der Technik

Das BGP ist ein Protokoll des Internet-Routings, das die besten Wege für den
Datenverkehr zwischen ASen bestimmt. Im ursprünglichen Sinne war mit einem
AS eine Organisation mit einem Standort gemeint, welche intern über ein inter-
nes routing Protokoll verfügte. Mit der Zeit hat sich die Bedeutung eines AS
abgewandelt und eine Autonome System Nummer (ASN) kann von einer Orga-
nisation Standortübergreifend verwendet werden bzw. eine Organisation kann
über mehrere ASNs verfügen. Es verwendet Peering-Verbindungen zwischen
Routern, um Informationen über erreichbare Netzwerke auszutauschen und
die optimalen Pfade für den Datenaustausch zu ermitteln. Anders als bei her-
kömmlichen Routing Protokollen wie dem Routing Information Protocol (RIP)
oder Open Shortest Path First (OSPF), wird hier eine direkte Transmission
Control Protocol (TCP) Verbindung zwischen Routern(Neighbours/Nachbarn)
hergestellt. Eine weitere Unterscheidung besteht darin, dass es sich bei BGP um
’Policy’-basiertes Routing, im Vergleich zu ‘Metrik‘ basierten Routing handelt.
Konkret bedeutet dies, dass ein AS selbst bestimmen kann, wie Datenverkehr
geroutet werden soll, sollte das AS über mindestens zwei Uplinks verfügen.

Wenn zwei BGP Nachbarn eine TCP Verbindung aufgebaut haben, begin-
nen diese BGP Informationen in Form von Nachrichten auszutauschen. Jede
Nachricht besteht aus einem Header, und dem tatsächlichen Inhalt. [Vgl. Beij-
num 2002, S. 19 f.] Um eine BGP Verbindung herzustellen, müssen sich Router
über eine ‘Open‘-Message verbinden. Diese wird direkt nach dem Aufbau der
TCP Verbindung ausgetauscht. [Vgl. Beijnum 2002, S. 20 f.]

Version My AS Hold time Identifier Parlen Optional parameters
1 byte 2 bytes 2 bytes 4 bytes 1 byte 0-255 bytes

Tabelle 2.1: Aufbau der ’Open’-Message
Quelle: [RFC4271 Rekhter, Hares und Li 2006] in Anlehnung an [Beijnum

2002, S. 20]

Sollte die Open-Message erfolgreich vom Gegenstück angenommen worden
sein, sendet dieser eine ’Keepalive’-Message zurück. Anschließend wird die
BGP-Routentabelle über ’Update’-Messages ausgetauscht. [Vgl. Beijnum 2002,
S. 20]

6

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

UR length Withdrawn routes PA length Path attributes NLRI
2 bytes Variable 2 bytes Variable Variable

Tabelle 2.2: Aufbau der ’Update’-Message
Quelle: [RFC4271 Rekhter, Hares und Li 2006] in Anlehnung an [Beijnum

2002, S. 20]

Durch die ‘Update‘-Message werden die eigentlichen Informationen über-
tragen. Hierdurch können neue Routen hinzugefügt, oder alte Routen zurück-
gezogen werden. Ein nicht optionales Attribute ist der ‘AS_PATH‘, welcher
beschreibt, über welche AS bestimmte Präfixe zu erreichen sind.

7

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

BGP-Communities sind ein Mechanismus, mit welchem Netzwerkbetreiber
spezifische Gruppen oder Kategorien von Präfixen markieren können. Die-
se Markierungen, als „Communities“ bezeichnet, können verwendet werden,
um Routen zu identifizieren und zu beeinflussen, wie sie von anderen ASen
interpretiert werden. Durch die Verwendung von Communities können Netz-
werkbetreiber das Routing auf feinere Weise steuern und anpassen, ohne die
Kernstruktur des BGP-Netzwerks zu verändern. Die Manipulation von Routen
mittels BGP Communities erfolgt, indem einem bestimmten Präfix eine oder
mehrere BGP-Communities zugewiesen werden. Andere AS können dann diese
Community-Markierungen verwenden, um spezifische Aktionen auszuführen,
wie z.B.:

• Pfadwahl beeinflussen: Durch das Zuweisen von Communities zu be-
stimmten Präfixen können Netzwerkbetreiber festlegen, wie andere AS
ihre Routen interpretieren sollen. Dies kann dazu verwendet werden, den
bevorzugten Weg für den Datenverkehr zu beeinflussen.

• Traffic-Engineering: Netzwerkbetreiber können Communities verwenden,
um den Datenverkehrsfluss zu steuern. Durch Markieren von Präfixen
können sie bestimmte AS dazu anleiten, den Datenverkehr auf bestimmten
Wegen zu leiten, um Netzwerkressourcen effizienter zu nutzen.

• Blackhole-Routing: BGP Communities können dazu genutzt werden,
bestimmte Präfixe zu markieren und den Datenverkehr über Blackholes
zu lenken, um Angriffe oder Überlastungen zu bewältigen. Spezielle für
Blackholing wurde eine eigene Community definiert: 65535:666 [Vgl.
King u. a. 2016]

• Routenfilterung: AS können Community-Markierungen verwenden, um
präzise Routenfilterung durchzuführen. Damit können sie bestimmte
Routen von bestimmten Quellen oder für bestimmte Zwecke filtern oder
akzeptieren.

Die Verwendung von BGP Communities ermöglicht eine flexiblere und zielge-
richtete Steuerung des Internet-Routings. Netzwerkbetreiber können so gezielt
auf unterschiedliche Anforderungen reagieren und gleichzeitig die Integrität
und Stabilität des BGP-Netzwerks aufrechterhalten.

8

Kapitel 3

Architekur

Die Architektur des Route Injection Service besteht aus drei wesentlichen
Bestandteilen, welche entweder direkt verbunden sind oder mittels Hashicorp
Consul Daten austauschen können.

Abbildung 3.1: Route Injection Architektur
Quelle: Firmenintern

9

3.1. API KAPITEL 3. ARCHITEKUR

3.1 API

Die API ist dafür verantwortlich die Eingaben des Users, welche über die
Engine übermittelt wurden zu überprüfen und zu validieren. Sind die Eingaben
nicht korrekt, so gibt die API eine entsprechende Fehlermeldung zurück. In der
Zukunft wird die API auch dafür verantwortlich sein entsprechende Monitoring
Endpunkte zur Verfügung zu stellen, sodass der allgemeine Status des Service
überwacht werden kann.

3.2 Hashicorp Consul

Hashicorp Consul, im weiteren Verlauf nur ‘Consul‘ genannt, wird als Zwischen-
speicher für Routen und deren injizierte BGP-Communities verwendet. Des
Weiteren können Injectoren hier Ihren ‘Heartbeat‘ abspeichern.

3.3 Injector

Der Injector bezieht periodisch(alle 5 Sekunden) die in Consul gespeicherten
Routen. Sollte es hier eine Änderung gegeben haben, wird eine Konfigurations-
datei für den Bird Routingdaemon neu erstellt. Anschließend wird über das
’Bird Controlsocket’ der Befehl zum Neuladen der Konfiguration gegeben.

3.4 Router

Als Router wird der Bird Routingdaemon eingesetzt. Dieser stellt eine BGP-
Session mit einem physischen Router her, welcher die von Bird zu Verfügung
gestellten Router importiert und innerhalb des BGP-Netzwerks weitergibt.

10

Kapitel 4

API Komponente

4.1 Aufgaben

Die API ist die Schnittstelle des Service und außen stehenden Technologien wie
der Anexia Engine. Ihre Hauptaufgabe besteht darin, eine strukturierte Inter-
aktionsmöglichkeit zu bieten, die es internen Benutzern über Systeme wie der
Anexia Engine ermöglicht, BGP-Routen mit zugehörigen BGP-Communities in
das Netzwerk zu injizieren. Dies geschieht durch die Annahme von JavaScript
Object Notation (JSON)-Anfragen, die spezifische Informationen enthalten,
nämlich IPv4- oder IPv6-Präfixe und die entsprechenden BGP-Communities.
Die API führt eine umfassende Validierung der eingehenden Daten durch, um si-
cherzustellen, dass die bereitgestellten Informationen korrekt und im erwarteten
Format vorliegen. Diese Validierung umfasst die Überprüfung der Richtigkeit
der IP-Adressbereiche sowie die syntaktische Korrektheit der zugeordneten
BGP-Communities. Durch diesen Schritt wird gewährleistet, dass nur gültige
Informationen in das System eingebracht werden. Die validierten Daten werden
anschließend an Consul, über dessen eigene API übermittelt. Die Daten werden
so abgelegt, dass der Injector einen erleichterten Zugriff hat.

11

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

4.2 Umsetzung

Da die Konzeption und Implementierung der API schon umfassend in der Pro-
jektarbeit T1000 erläutert wurde, wird auf eine Wiederholung dessen verzichtet.
In diesem Bericht wird lediglich die Implementierung des ‘Delete‘-Endpunkts
dargestellt, da dieser aus zeitlichen Gründen nicht mehr in den ersten beiden
Praxisphase implementiert werden konnte, jedoch ein Grundbestandteil des
entwickelten Service ist.

Die Implementierung eines ‘Delete‘-Endpunkts in der API, mittels des
Django Rest Frameworks, ermöglicht das Löschen von Routen aus dem System.

1 class BaseRouteViewSet (
2 CreateModelMixin ,
3 ReadOnlyModelViewSet ,
4 BaseRequestViewSet ,
5):
6 @action (detail =False , url_path =r"([A-Za -z-_/]*) status /(?P<

task_info_id >[0 -9a-z -]+)")
7 def status (self , request , task_info_id):
8 route_object = get_object_or_404 (
9 self. serializer_class .Meta.model , task_info_id =

task_info_id
10)
11 propagate_status (route_object)
12 return super (). status (request , task_info_id)

Code Snippet 4.1: BaseRouteViewset Klasse

Der in Snippet 4.1 gezeigte Code stellt eine Mutterklasse dar, von welcher
sowohl der ‘Create‘, als auch ‘Delete‘-Endpunkt erben. Durch diese Klasse wird
die Möglichkeit gegeben, von der Anexia Engine erwartete Endpunkte einfach
zu implementieren, ohne dass sich ein Entwickler mit den Feinheiten dessen
auseinandersetzen muss. Da hier die CreateModelMixin Klasse geerbt wird,
stellt sich das DRF automatisch ein ’POST’-Requests für diesen Endpunkt zu
akzeptieren.

12

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

1 class DeleteRouteViewSet (BaseRouteViewSet):
2 queryset = DeleteRoute . objects .all ()
3 serializer_class = DeleteRouteSerializer
4

5 def perform_create (self , serializer):
6 super (). perform_create (serializer)
7 delete_route (serializer . instance)

Code Snippet 4.2: DeleteRouteViewset Klasse

Die tatsächliche Implementierung fällt durch das Erben von der ‘Base-
RouteViewSet‘ Mutterklasse sehr simpel aus. Durch das Überschreiben der
perform_create Methode, welche vom DRF zur Verfügung gestellt wird, kann
diese als Hook benutzt werden um eigenen Code ausführen zu lassen. Mit der
Super Methode wird sichergestellt, dass die nicht überschriebene Ursprungs-
methode von perform_create ausgeführt wird. Das DRF erstellt dann einen
Datenbankeintrag mit den vom Nutzer eingegeben Werten. Vor dem Ende
des Kontextes der Methode wird noch eine weitere Methode delete_route
aufgerufen.

1 def delete_route (instance):
2 consul_instance = prepare_consul (os. getenv (" CONSUL_HOST "),

os. getenv (" CONSUL_PORT "))
3 prefix = str(instance . prefix)
4 prefix_encoding = get_prefix_encoding (prefix)
5 consul_instance .kv. delete (
6 f’v1/route/ global /{ prefix_encoding }/{ prefix . replace

("/" , "_")}’
7)
8 update_active_injectors (instance)

Code Snippet 4.3: delete_route Methode

Hier findet nun das eigentliche Übermitteln der Daten an Consul statt.

13

Kapitel 5

Injector Komponente

5.1 Aufgaben

Der Injector ist der zentrale Baustein des Route Injection Service, der die
Möglichkeit bietet, mittels BGP Communities, Routen in das Netzwerk zu
injizieren. Der Injector erfüllt dabei eine Reihe von wesentlichen Aufgaben:

Zuallererst ist der Injector für die Konvertierung der von der API empfan-
genen Routen in eine für den Router (Bird) verständliche Konfigurationsdatei
verantwortlich. Diese Konvertierung ist von entscheidender Bedeutung, um
die Weiterleitung der Routen an den Router in einem kompatiblen Format
sicherzustellen. Während die Validierung der Präfixe und Communities von
der API Komponente übernommen wird, hat der Injector eine eigene Validie-
rung für Routen, welchen über den Emergency-Mode angegeben werden, da
hier die API Komponente überbrückt wird. Bei auftretenden Konflikten oder
Unstimmigkeiten kann der Injector angemessene Maßnahmen ergreifen, um
die Integrität der anderen Komponenten und schlussendlich des Netzwerks, zu
gewährleisten. Ein wichtiger Aspekt ist auch die aktive Kommunikation des
Injectors mit dem Router (Bird). Diese Kommunikation erfolgt, um die generier-
ten Konfigurationsänderungen effektiv zu übertragen und sicherzustellen, dass
die injizierten Routen nahtlos in das Routing-Protokoll des Routers integriert
werden. Schließlich stellt der Injector durch präzises loggen sicher, dass im
Falle eines Fehlers, oder im schlimmsten Fall, bei einem Absturz der Kompo-
nente, Ereignisse festgehalten werden. Zusammenfassend fungiert der Injector
als entscheidende Schnittstelle, die die Funktionen der API und des Routers
miteinander verbindet. Mit seiner intelligenten Konvertierung und Verwaltung

14

5.1. AUFGABEN KAPITEL 5. INJECTOR KOMPONENTE

von Routen durch BGP Communities gewährleistet er, dass die gewünschten
Routing-Änderungen präzise und effizient im BGP-Netzwerk implementiert
werden.

15

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2 Umsetzung

5.2.1 Generieren der Config Files für Bird

Für den einfachen Umgang mit Routen wurde für die routes Variable eine
Python Dataclass angelegt, welche das IP-Präfix, die IP-Version und eine Liste
der gesetzen BGP-Communities enthält.

1 @dataclass
2 class Route:
3 prefix : str
4 encode : str
5 communities : list[str]
6

7 def __init__ (self , prefix ="", encode ="", communities =[]):
8 self. prefix = prefix
9 self. encode = encode

10 self. communities = communities
11

12 def __str__ (self):
13 return f"{self. encode } {self. prefix } {self. communities }

"
14

15 def decode_prefix (self):
16 self. prefix = self. prefix . replace ("_", "/")
17

18 def encode_prefix (self):
19 self. prefix = self. prefix . replace ("/", "_")
20

21 def get_communities (self):
22 communities = self. communities
23 return list(map(lambda com: com. replace (":", ","),

communities))

Code Snippet 5.1: Python Dataclass für Routen Objekte

Neben den genannten Feldern, kann die Dataclass auch noch Methoden zur
verarbeitung der Felder, ähnlich wie eine normale Klasse beinhalten. Besonders
zu betonen ist hier die get_communities Methode, welche die Communities in
ein von Bird akzeptiertes Format umwandelt.

16

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Die in Consul gespeicherten Routen werden dann periodisch von Consul über
dessen eigene API abgefragt. Hierfür ist die parse_consul_values Methode
zuständig.

1 def parse_consul_values (values , watched_prefix) -> (list[Route
], list[Route]):

2 if not values :
3 return [], []
4

5 v4_routes = []
6 v6_routes = []
7

8 for entry in values :
9 route_entry = Route ()

10 route_entry . prefix = entry["Key"]. split(watched_prefix)
[1]

11 json_communities = entry["Value"]. decode ("utf -8")
12 route_entry . communities = json.loads(json_communities)[

" communities "]
13

14 route_entry .encode , route_entry . prefix = route_entry .
prefix .split("/")

15 route_entry . decode_prefix ()
16

17 if route_entry . encode == "IPv4":
18 v4_routes . append (route_entry)
19

20 elif route_entry . encode == "IPv6":
21 v6_routes . append (route_entry)
22 return v4_routes , v6_routes

Code Snippet 5.2: parse_consul_values Methode

Im Laufe der Methode werden die abgefragten Einträge in Routenobjekte
umgewandelt. Um herauszufinden um welche IP Version es sich bei der Route
handelt, wird der entsprechende Key des Pfades ausgelesen, da dieser die IP
Version mit im Namen trägt. Als Resultat gibt die Methode ein Tupel zurück,
wobei eines die IPv4 Routen und das andere die IPv6 Routen sind. Diese
Aufteilung ist notwendig, da die in Debian 11 mitgelieferte Version von Bird
eine klare Auftrennung dieser fordert. Neuere Versionen von Bird können auch
mit beiden IP Versionen gleichzeitig umgehen.

Durch die Auftrennung der beiden IP-Versionen, muss auch die Konfigurati-
onsdatei für Bird, zweimal generiert werden. Mit der Methode generate_bird_files

17

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

werden Umgebungsvariablen geladen, welche für die Generierung der Konfigu-
ration benötigt werden. Neben diesen übergibt die Methode auch die Routen
als Parameter weiter.

1 def generate_bird_files (v4_routes , v6_routes , pybird , pybird6):
2 gen = BirdConfigGenerator ()
3 click.echo(" Generating and committing config files")
4 gen. bird_config (
5 v4_routes ,
6 " route_template .j2",
7 "../ config /bird",
8 "v4.conf",
9 os. getenv (" ROUTER_ID "),

10 os. getenv (" LOCAL_AS "),
11 os. getenv (" REMOTE_AS "),
12 os. getenv (" BGP_NEIGHBOR "),
13 " ANEXIA Route Injection v4",
14)
15

16 gen. bird_config (
17 v6_routes ,
18 " route_template .j2",
19 "../ config /bird",
20 "v6.conf",
21 os. getenv (" ROUTER_IDv6 "),
22 os. getenv (" LOCAL_AS "),
23 os. getenv (" REMOTE_AS "),
24 os. getenv (" BGP_NEIGHBORv6 "),
25 " ANEXIA Route Injection v6",
26)
27

28 pybird . commit_config ()
29 pybird6 . commit_config ()
30 click.echo("Done")

Code Snippet 5.3: generate_bird_files Methode

18

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Die Methode bird_config, welche um eine gute Struktur zu wahren zu einer
gesonderten Datei und Klasse angehört, ruft die get_communities Methode
der Route Dataclass auf, um die Routen in einer von Bird lesbares Format
zu wandeln. Des Weiteren wird hier die tatsächliche Konfiguration auf das
Dateisystem geschrieben.

1 def bird_config (
2 self ,
3 unconverted_routes ,
4 route_template ,
5 config_path ,
6 config_name ,
7 router_id =None ,
8 local_as =None ,
9 remote_as =None ,

10 bgb_neighbor =None ,
11 description =None ,
12):
13 converted_routes = []
14 for route in unconverted_routes :
15 route. communities = route. get_communities ()
16 converted_routes . append (route)
17

18 target_file = self. __prepare_config_path (config_path ,
config_name)

19 self. __write_config_file (
20 target_file ,
21 converted_routes ,
22 route_template ,
23 router_id ,
24 local_as ,
25 remote_as ,
26 bgb_neighbor ,
27 description ,
28)

Code Snippet 5.4: bird_config Methode

Um die Routen an den Bird Routing Daemon übermitteln zu können, müssen
diese erst in eine für Bird verständliche Konfigurationsdatei umgewandelt
werden. Zur Realisierung wird die Jinja2 Templating Engine verwendet, da
diese die Möglichkeit schafft, alle Eigenschaften des Injectors dynamisch zu
konfigurieren. Somit kann der tatsächliche Code aller Injectoren identisch sein,
und Variable Eigenschaften wie z.B. die router_id oder der BGP-Peering

19

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Nachbar können beim Ausrollen festgelegt werden.
1 protocol static injected_routes {
2 {% for route in routes %}
3 route {{ route. prefix }} via {{ router_id }} {
4 {% for community in route. communities %}
5 bgp_community .add (({{ community }}));
6 {% endfor %}
7 };
8 {% endfor %}
9 }

10

11 protocol bgp Route_Injection {
12 description "{{ description }}";
13 local as {{ local_as }};
14 neighbor {{ bgp_neighbor }} as {{ remote_as }};
15 next hop self;
16 export filter {
17 if proto = " injected_routes " then accept ;
18 reject ;
19 };
20 }

Code Snippet 5.5: Jinja Template zur Konfigurationsgenerierung

In diesem Template finden sich einige Variablen

• routes (Python Liste mit Routen Elementen)

• router_id (IPv4 Addresse des Injectors)

• local_as (Lokales ASN)

• remote_as (Nachbar ASN)

• bgp_neighbor (Nachbar BGP-Router IPv4 Adresse)

• description (Beschreibung des Protokolls)

wieder, welche entweder im Code oder dynamisch beim Ausrollen, also
ausrollen des Injectors gesetzt werden müssen. Jinja kann auch mit Listen und
verschachtelten Listen umgehen, was bei der routes Variable zum Einsatz
kommt. Jinja kann dann über die Liste der Routenobjekte iterieren und für jede
Route einen gesonderten Eintrag mit den jeweiligen BGP-Communities erstel-
len. Folglich ein Beispiel einer möglichen Konfiguration. ASNs und router_ids

20

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

können hier entweder als Umgebungsvariable oder von einer .env Datei gela-
den werden. Die Routen werden dynamisch während der Programmlaufzeit
angegeben, konvertiert und konfiguriert.

1 protocol static injected_routes {
2 route 1.1.1.1/32 via 172.20.0.5 {
3 bgp_community .add ((47147 ,3200));
4 bgp_community .add ((12345 ,12345));
5 };
6 }
7

8 protocol bgp Route_Injection {
9 description " ANEXIA Route Injection v4";

10 local as 64701;
11 neighbor 172.20.0.6 as 65001;
12 next hop self;
13 export filter {
14 if proto = " injected_routes " then accept ;
15 reject ;
16 };

Code Snippet 5.6: Beispiel einer Konfigurationsdatei

21

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Somit können nun Konfigurationsdateien für Bird erstellt werden. Sollte
jedoch während dem Rendern des Templates ein Fehler auftreten, kann es
passieren, dass eine inkorrekte oder gar keine Konfigurationsdatei generiert
wird. Dies könnte einen negativen Einfluss auf die Operation des Service haben
und muss somit verhindert werden.

Um das Problem zu verhindern, wird die Konfiguration erst in eine temporäre
Datei geschrieben. Wenn dies erfolgreich war, dann wird die temporäre Datei
umbenannt und in das echte Konfigurationsverzeichnis geschoben. Da hier eine
Datei überschrieben statt angepasst wird, gehen Dateiberechtigungen verloren
und müssen neu gesetzt werden.

1 def __write_config_file (
2 self ,
3 target_path ,
4 routes ,
5 template ,
6 router_id =None ,
7 local_as =None ,
8 remote_as =None ,
9 bgp_neighbor =None ,

10 description =None ,
11):
12 template = self.env. get_template (template)
13 with NamedTemporaryFile (delete =False , mode="w") as conf:
14 conf.write(
15 template . render (
16 routes =routes ,
17 router_id =router_id ,
18 local_as =local_as ,
19 remote_as =remote_as ,
20 bgp_neighbor = bgp_neighbor ,
21 description = description ,
22)
23)
24 try:
25 os.chmod(conf.name , 0o660)
26 shutil .move(conf.name , target_path)
27 except Exception as e:
28 echo(e)
29 os. remove (conf.name)

Code Snippet 5.7: __write_config_file Methode

22

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2.2 Status der Routen von Bird abfragen

Evaluation der pybird Bibliothek

Da die entwickelte API über einen Status Endpunkt verfügt, welcher letztendlich
von der Anexia Engine abgerufen wird, muss auch der Injektor die benötigten
Statusinformationen zur Verfügung stellen. Hierfür wurde evaluiert, welche
Python Bibliothek sich am besten zu diesem Zwecke eignet.

Die Entscheidung für die Verwendung der ‘pybird‘ Bibliothek wurde aus
folgenden Gründen getroffen:

1. Funktionalität: Die ‘pybird‘ Bibliothek wurde speziell dafür entwickelt
mit dem Bird Routing Daemon zu interagieren.

2. Direkte Socket Anbindung: ‘pybird‘ unterstützt die direkte Kommunika-
tion mit dem Bird Control Socket, was eine erleichterte Kommunikation
ermöglicht.

3. Aktualisierung und Wartung: Da die ‘pybird‘ Bibliothek aktiv gepflegt
wird, kann sichergestellt werden, dass sie auch mit zukünftigen Versionen
des Bird Routing Daemons kompatibel sein wird. Des Weiteren kann so
auch sichergestellt werden, dass das Route Injection Project sich auch in
der Zukunft noch auf diese Bibliothek verlassen kann.

4. Open-Source: Durch den offenen Quellcode, kann sichergestellt werden,
dass der Code keine Malware/Spyware enthält. Sollte es nötig sein, kann
der Quellcode der Bibliothek geforked, und auf die Bedürfnisse der Anexia
angepasst werden.

Über die Methode get_routes der PyBird Klasse können die von Bird
übernommenen Routen abgefragt werden. Als Parameter kann das Präfix der
Route angegeben werden, sodass die Ausgabe auf nur dieses Präfix beschränkt
wird. Pybird gibt die Ausgabe dann in folgendem Format zurück:

1 [{’ community ’: ’65535:65281 ’ ,
2 ’prefix ’: ’1.2.3.4/32 ’ ,
3 ’peer ’: ’172.20.0.3 ’ ,
4 ’interface ’: ’eth0’,
5 ’source ’: ’injected _routes ’,
6 ’time ’: ’13:37:47 ’}]

Code Snippet 5.8: Unverarbeitete Ausgabe von Pybird

23

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Von dieser Ausgabe wird jedoch nur der Teil, welcher die Communities
betrifft benötigt. Folglich muss die Ausgabe noch im Code angepasst werden.

1 def respond_state_to_consul (
2 consul : ckv , pybird : PyBird , route: Route , injector_id : str
3) -> None:
4 state = pybird . get_routes (prefix =route. prefix)
5 route. encode_prefix ()
6 try:
7 actual_communities = state [0]. get(" community ", "").

split(" ")
8 except IndexError :
9 actual_communities = []

10 expected_communities = list(route. communities)
11 state = get_bird_communities (expected_communities ,

actual_communities)
12 state = json.dumps ({" communities ": state })
13 try:
14 consul .kv.put(
15 f"v1/state /{ injector_id }/{ route. encode }/{ route.

prefix }",
16 state ,
17)
18 except requests . exceptions . ConnectionError :
19 click.echo("Lost consul while reporting route :c")
20 return
21 route. decode_prefix ()
22 click.echo(f"Route {route. prefix } with state {

actual_communities } pushed to consul ")

Code Snippet 5.9: respond_state_to_consul Methode

Um den Status zu bestimmen, werden die Communities, welche im Routen-
objekt abgespeichert sind, mit den Communities welche von Bird zurückgegeben
wurde verglichen. Stimmen diese überein, so kann davon ausgegangen werden,
dass Bird alle Communities akzeptiert hat und an den Nachbar Router übermit-
teln kann. Sollte es Abweichungen zwischen den Communities geben, bedeutet
dies, dass noch nicht alle Communities von Bird akzeptiert wurden. Als Folge
dessen werden auch nur die aktuell in Bird eingetragen Communities zurück
an Consul übermittelt. Die API-Komponente des Route Injection Service fragt
dann den in Consul eingetragenen Status ab und bestimmt dann selbst, ob
der gesamte Prozess erfolgreich, noch im Gange oder fehlerhaft war. Dies wird
dann von der Anexia Engine interpretiert und ist für den Nutzer sichtbar.

24

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2.3 Realisierung des Heartbeats

Um sicherzustellen, dass die API den aktuellen Status der online verfügbaren
Injektoren erfassen kann, verwenden die Injektoren ein sogenanntes ‘Heartbeat‘-
System, das seine Aktivität in Consul signalisiert. Dieses Heartbeat wird in
Form eines Wertes (Value) in Consul gemeldet. Dieser Prozess ermöglicht es der
API, den Zustand der einzelnen Injektoren zu überwachen und sicherzustellen,
dass sie ordnungsgemäß funktionieren.

Jeder Injektor meldet seinen Status durch das Schreiben eines Wertes
(Value) in einen spezifischen Schlüssel-Wert-Pfad in Consul. Dieser Pfad lautet:
v1/state/<injector_id>/heartbeat. Hierbei steht <injector_id> für die
eindeutige Kennung des Injektors. Der Wert (Value), der in den oben genannten
Schlüssel-Wert-Pfad geschrieben wird, hat den Inhalt ‘{}‘, was auf ein leeres
JSON-Objekt hinweist. Dieses leere Objekt dient als Platzhalter und signalisiert
der API, dass der Injektor aktiv ist und seinen Heartbeat meldet. Der gemeldete
Wert (Value) hat eine Time to live (TTL) von 10 Sekunden. Dies bedeutet,
dass nachdem der Injektor seinen Heartbeat gemeldet hat, der Wert für 10
Sekunden in Consul bestehen bleibt. Wenn innerhalb dieses Zeitraums keine
weiteren Heartbeats gemeldet werden, wird der Wert automatisch aus Consul
entfernt.

Durch das Heartbeat-System kann die API regelmäßig aktualisierte Infor-
mationen erhalten, welche Injektoren online und funktionsfähig sind.

Um den Heartbeat im Programmcode möglichst modular zu realisieren
wurde hierfür eine eigene Methode erstellt.

1 def create_heartbeat (consul , injector_id):
2 session_id = consul . session . create (behavior =" delete ", ttl

=10)
3 consul .kv.put(
4 key=f"v1/state /{ injector_id }/ heartbeat ", value="{}",

acquire = session_id
5)
6 return session_id

Code Snippet 5.10: create_heartbeat Methode

Nach dem initialen Anlegen des Heartbeateintrages wird dieser alle fünf
Sekunden erneuert und sicherzustellen, dass die TTL des Eintrages nicht abläuft.

25

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2.4 Emergency-Mode

Um sicherzustellen, dass der Route Injection Service auch in Szenarien von
Netzwerkproblemen zwischen der API und den Injektoren effizient arbeiten
kann, sei es für das Hinzufügen, Ändern oder Löschen von Routen, wurde eine
maßgebliche Funktion eingeführt, die als Emergency-Mode, bzw. Notfallmodus
bekannt ist. Diese Funktion wurde entwickelt, um direkten Zugriff auf die Injek-
toren zu ermöglichen und Routenverwaltungsvorgänge über die Kommandozeile
durchzuführen. Der Emergency-Mode fungiert als eine Art Sicherheitsvorkeh-
rung, die sicherstellt, dass die Verfügbarkeit und Funktionalität des Dienstes
aufrechterhalten werden kann, selbst wenn die übliche Kommunikation zwischen
der API und den Injektoren temporär gestört ist. Der Namensteil ‘Mode‘ lässt
vermuten, dass es sich um einen tatsächlichen Operationsmodus handelt. Dies
ist allerdings nicht ganz korrekt. Der Emergency-Mode ist eher als Funktiona-
litätserweiterung zu sehen und kann selbst dann aktiviert werden, wenn die
Kommunikation zwischen API und Injector intakt ist. Dies ist insbesondere
nützlich, wenn dringende Änderungen an den Routingeinstellungen erforderlich
sind, die nicht auf die normale Kommunikation warten können. Um Zugriff auf
die Kommandozeile zu erhalten, muss ein Nutzer sich über Secure Shell (SSH)
auf den Injector einloggen. Firmeninterne Automatismen stellen sicher, dass
nur befugte Nutzer Zugriff auf das System haben.

Zur Gewährleistung der Integrität des Service müssen die vom Nutzer
eingegebene Routen validiert und auf Ihre Korrektheit überprüft werden. In
der Regel wird dies von der API übernommen, jedoch werden im Notfallmodus
die Routen direkt in den Injector eingespeist, und die Validierung der API wird
umgangen. Daher muss diese vom Injector selbst durchgeführt werden.

26

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

1 def validate_route (prefix : str , communities =None) -> Route:
2 route = Route ()
3 try:
4 route. prefix = str(ipaddress . ip_network (prefix))
5 except ValueError :
6 raise click. exceptions . BadParameter ("Route prefix is

invalid ")
7 if ":" in route. prefix :
8 route. encode = "IPv6"
9 else:

10 route. encode = "IPv4"
11 if communities :
12 communities = communities .split(",")
13 for community in communities :
14 community_parts = community .split(":")
15 if len(community_parts) != 2:
16 raise click. exceptions . BadParameter (
17 f"{ community } is not a valid BGP community "
18)
19 try:
20 if not int(community_parts [0]) in range (1,

65535) or not int(
21 community_parts [1]
22) in range (1, 65535) :
23 raise click. exceptions . BadParameter (
24 f"{ community } is not a valid BGP

community "
25)
26 except ValueError :
27 raise click. exceptions . BadParameter (
28 f"{ community } contains invalid integer

value"
29)
30 route. communities = list(communities)
31 return route

Code Snippet 5.11: Methode zur Validierung von Routen

Der Zweck ist, BGP-Routen, primär in Bezug auf deren Präfixe und Com-
munities zu validieren. Die Methode akzeptiert ein Präfix als obligatorisches
Argument und optional eine Liste von Communities als Zeichenfolge. Das Haupt-
ziel dieser Funktion ist es, sicherzustellen, dass die angegebenen Informationen
den BGP-Anforderungen entsprechen und gültig sind.

27

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Zuerst wird ein neues Routenobjekt erstellt, das als Container für die
validierten Daten dient. Die Funktion versucht dann, den übergebenen Präfix
als IP-Netzwerk zu interpretieren. Bei einer ungültigen Eingabe wird eine
‘BadParameter‘-Exception ausgelöst.

Das Präfix wird analysiert, um festzustellen, ob es sich um ein IPv4- oder
IPv6-Präfix handelt. Dies wird im ‘encode‘-Attribut des Routenobjekts ver-
merkt. Im Fall von übergebenen Communities werden diese analysiert und
validiert. Jede Community wird auf ihre Struktur überprüft, und die einzelnen
Teile werden auf ihre Gültigkeit im Hinblick auf ASN und Wertigkeit geprüft.
Fehlerhafte Communities führen zu entsprechenden ‘BadParameter‘-Exceptions.

Abschließend werden die validierten Informationen, einschließlich Präfix und
Communities, im Routenobjekt gespeichert. Die Funktion gibt dieses Objekt
zurück, das nun die validierten Daten enthält.

Zur Vereinfachung der Interaktionen mit der Kommandozeile wird die
Bibliothek ‘click‘ verwendet. Durch diese können Exceptions leicht an den
Benutzer übermittelt werden, und Tests können einfach gestaltet werden.

Der Operator welcher letztendlich den Emergency Mode bedienen wird, hat
zwei Eingabemöglichkeiten:

• add-route <prefix> <communities>

• delete-route <prefix>

Wobei ‘<>‘ für Platzhalter des entsprechenden Parameters stehen. Eine
Möglichkeit, schon existierende Routen zu updaten bietet der Emergency Mode
nicht. Routen welche über den Emergency Mode hinzugefügt wurde, haben
immer Vorrang gegenüber Routen, welche über Consul geladen wurden. Eine
weitere Anforderung an den Emergency Mode war, dass Routen auch nach
Reboot des Injectors erhalten bleiben. Dies forderte, dass Routen auf einer
Weise im Dateisystem erhalten werden. Um dies zu Realisieren bestünde die
Möglichkeit eine Datenbank wie ‘sqlite‘ zu nutzen. Eine einfachere Lösung
dieses Problems war es jedoch, die Routen als JSON in eine Datei zu schreiben.
Die schon bei den Konfigurationsdateien für Bird, wurden IPv4 und IPv6 aus
demselben Grund getrennt.

Um die Konsistenz und Integrität dieser Dateien, auch ‘Emergency Files‘
genannt zu gewährleisten, wurde ein Filelock gesetzt. Zur Vermeidung des
Dirty read Problems, welches in der Vorlesung Datenbanken erläutert wurde,
wurde das Filelock sowohl für Schreib- als auch für Lesevorgänge gesetzt. So

28

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

kann ein zweiter Prozess das Emergency File erst lesen, wenn der erste Prozess
den Schreibvorgang abgeschlossen hat. Dies dient nicht nur zur Mehrbenut-
zersynchronisation von mehreren Menschen, sondern hauptsächlich, dass der
Hauptprozess nicht versucht das Emergency File zu lesen, während ein Operator
mittels des Emergency Mode Änderungen vornimmt.

Da Python, beziehungsweise die benutze JSON Bibliothek Probleme da-
mit hatte verschachtelte JSONs zu de- und enkodieren, wurde eine weitere
Dataclass angelegt. Diese Dataclass dient nur als Container, um eine Liste an
Routenobjekten anzulegen.

1 @dataclass_json
2 @dataclass
3 class RouteContainer :
4 routes : list[Route]
5

6 def __init__ (self , routes):
7 self. routes = routes
8

9 def __str__ (self):
10 return f"{self. routes }"

Code Snippet 5.12: Route Container Dataclass

Zu Beginn des Programmstarts werden die Pfade der Lockfiles und Emer-
gency Files innerhalb des Docker Containers festgelegt:

1 emergency_file_v4 = "/var/lib/ route_injector / emergency_route_v4
.json"

2 emergency_file_v6 = "/var/lib/ route_injector / emergency_route_v6
.json"

3 lock_file_v4 = "/var/lib/ route_injector / emergency_route_v4 .lock
"

4 lock_file_v6 = "/var/lib/ route_injector / emergency_route_v6 .lock
"

Code Snippet 5.13: Deklaration der Dateipfade

29

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Die Methode welche beim Aufruf von add-route über die Kommandozeile
aufgerufen wird lässt sich wie folgt darstellen:

1 @click . argument (" communities ")
2 @click . argument (" prefix ")
3 @cli. command ()
4 def add_route (prefix , communities):
5 route = validate_route (prefix , communities)
6 emergency_file = emergency_file_v4
7 lockfile = FileLock (lock_file_v4)
8 if route. encode == "IPv6":
9 emergency_file = emergency_file_v6

10 lockfile = FileLock (lock_file_v6)
11 with lockfile . acquire ():
12 current_routes = read_emergency_file (emergency_file)
13 new_routes = find_and_remove_in_list (current_routes ,

route)
14 new_routes . append (route)
15 route_container = RouteContainer (new_routes)
16 write_emergency_file (route_container , emergency_file)

Code Snippet 5.14: add_route Methode

Zuerst wird über den erwähnten Validierungsprozess sichergestellt, dass
die vom Nutzer eingegeben Route eine valide Route ist. Über eine if Abfrage
wird geprüft, ob das Präfix der eingegebenen Route ein IPv6 Präfix ist. Ist
das der Fall, dann wird das entsprechende Emergency File und Lockfile einer
Variablen zugewiesen. Anschließend wird das Filelock auf das entsprechende
Emergency File gesetzt, um sicherzustellen, dass keine weiteren Prozesse auf
das File zugreifen können. Im Folgenden werden die schon im Emergency File
enthaltenen Routen mit den neu hinzugefügten verglichen. Sollte eine Route
hinzugefügt werden, wessen Präfix schon im aktuellen Emergency File enthalten
ist, wird diese über die find_and_remove_in_list entfernt.

1 def find_and_remove_in_list (route_list : list , list_element :
Route):

2 for element in route_list :
3 if element . prefix == list_element . prefix :
4 route_list . remove (element)
5 return route_list

Code Snippet 5.15: find_and_remove_in_list Methode

Die neue Route wird danach der Liste von Routen hinzugefügt, und über die
RouteContainer Dataclass wieder zu einer verschachtelten JSON konvertiert.

30

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

Zum Löschen von Routen aus den Emergency Files, gibt es die delete_route
Methode, welche sich maßgeblich dadurch unterscheidet, dass sie keine BGP-
Communities als Parameter benötigt, sondern lediglich das Routenpräfix. Infol-
gedessen, fehlt in dieser Methode auch der Teil, welcher die neue Route der
Routenliste hinzufügt, da hier nur die Route entfernt werden muss.

Da das Lesen und Schreiben der Files mehrmals im Programmcode geschieht,
wurde hierfür jeweils eine Methode geschrieben um Codeduplizierung möglichst
zu vermeiden und das Don’t repeat yourself (DRY) Prinzip einzuhalten.

1 def read_emergency_file (emergency_route_file : str) -> list:
2 if not os.path. exists (emergency_route_file):
3 return []
4 with open(emergency_route_file , "r") as emergency_route :
5 json_routes = emergency_route .read ()
6 routes_from_file = RouteContainer . from_json (json_routes

). routes
7 return routes_from_file

Code Snippet 5.16: read_emergency_file Methode

1 def write_emergency_file (routes : RouteContainer ,
emergency_route_file : str):

2 with NamedTemporaryFile (delete =False , mode="w") as
tmp_emergency_route_file :

3 tmp_emergency_route_file .write(routes . to_json ())
4 try:
5 shutil .move(tmp_emergency_route_file .name ,

emergency_route_file)
6 except Exception as e:
7 click.echo(e)
8 os. remove (tmp_emergency_route_file .name)

Code Snippet 5.17: write_emergency_file Methode

31

5.3. TESTEN KAPITEL 5. INJECTOR KOMPONENTE

5.3 Testen

32

Kapitel 6

Staging Umgebung

6.1 Planung

6.2 Umsetzung

33

Kapitel 7

Fazit

34

Literatur

Beijnum, Iljitsch van [2002]. Building Reliable Networks with the Border
Gateway Protocol. O’Reilly [siehe S. 6, 7].

King, Thomas u. a. [Okt. 2016]. BLACKHOLE Community. RFC 7999. doi:
10.17487/RFC7999. url: https://www.rfc-editor.org/info/rfc7999
[siehe S. 8].

Rekhter, Yakov, Susan Hares und Tony Li [Jan. 2006]. A Border Gateway
Protocol 4 (BGP-4). RFC 4271. doi: 10.17487/RFC4271. url: https:
//www.rfc-editor.org/info/rfc4271 [siehe S. 6, 7].

Schoch, Leon [Okt. 2022]. API für Route Injection [siehe S. 3, 4].

35

https://doi.org/10.17487/RFC7999
https://www.rfc-editor.org/info/rfc7999
https://doi.org/10.17487/RFC4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Liste der Code Snippets
	Akürzungsverzeichnis
	1 Einleitung
	2 Grundlagen
	2.1 Einführung in die Problematik
	2.2 Technologie Selektion
	2.2.1 Django Rest Framework
	2.2.2 Hashicorp Consul
	2.2.3 Docker
	2.2.4 Bird

	2.3 Stand der Technik

	3 Architekur
	3.1 API
	3.2 Hashicorp Consul
	3.3 Injector
	3.4 Router

	4 API Komponente
	4.1 Aufgaben
	4.2 Umsetzung

	5 Injector Komponente
	5.1 Aufgaben
	5.2 Umsetzung
	5.2.1 Generieren der Config Files für Bird
	5.2.2 Status der Routen von Bird abfragen
	5.2.3 Realisierung des Heartbeats
	5.2.4 Emergency-Mode

	5.3 Testen

	6 Staging Umgebung
	6.1 Planung
	6.2 Umsetzung

	7 Fazit
	Index
	Literaturverzeichnis
	Anhang

