. mh DHBW
dnexid Baden Wirtemberg

Karlsruhe

Route Injection

ProJeExkT T3 2000

fiir die Prifung zum
Bachelor of Science
des Studienganges Informationstechnik
an der
Dualen Hochschule Baden-Wiirttemberg Karlsruhe
von

Leon Louis Schoch

Abgabedatum 18. September 2023

Bearbeitungszeitraum 27 Wochen

Matrikelnummer 1015290

Kurs TINF21B5

Ausbildungsfirma Anexia Deutschland GmbH
Karlsruhe

Betreuer der Ausbildungsfirma Stephan Peijnik-Steinwender (B.Sc.)

Gutachter der Studienakademie Prof. Dr. Markus Strand

Erklarung

Ich versichere hiermit, dass ich meine Projekt T3 2000 mit dem Thema:
Route Injection selbststandig verfasst und keine anderen als die angege-
benen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass
die eingereichte elektronische Fassung mit der gedruckten Fassung tiberein-

stimmt.

Ort, Datum Unterschrift

Sperrvermerk

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Ausziigen Personen
auflerhalb des Priifungsprozesses und des Evaluationsverfahrens zugénglich
gemacht werden, sofern keine anderslautende Genehmigung vom Dualen

Partner vorliegt.

Zusammenfassung

Ein Distributed Denial of Service (DDoS)-Angriff kann eine starke Auslastung
der betroffenen Systeme verursachen. Dies kann einen Absturz zur Folge haben,
oder den Zugriff auf die Systeme verhindern. Um dieses Problem zu losen
wurde der Route Injection Service entwickelt, mit welchem ein Nutzer in der
Lage ist, Netzwerkroute tiber Border Gateway Protocol (BGP)-Communities
zu manipulieren. Ein [DDoSFAngriff kann daher in ein Blackhole geroutet, und

eine Belastung der Zielsysteme verhindert werden.

A[DDoS Attack can cause a high load on the attacked systems. As a result, the
systems might be inaccessible or crash. To solve this problem, we developed the
route injection service, which enables a user to manipulate network routes via
[BGB-Communities. ADDoSAttack can then be routed into a blackhole, and a

strain on the target systems can be avoided.

Inhaltsverzeichnis

(1

Einleitung|

[2

Grundlagen|

2.1 Einfuhrung in die Problematik|.
[2.2 Technologie Selektion|,

[2.2.1 Django Rest Frameworkl
[2.2.2 Hashicorp Consul|

[3.1 Application Programming Interface (API)l
[3.2 Hashicorp Consul|

3.3 Injector|

APl Komponente|

[4.1 Autgaben|
[4.2 Umsetzung|.

[5

Injector Komponente|

[>.1 Autgaben|
[5.2 Umsetzung|.
[>.2.1 Generieren der Config Files tur Bird].
[5.2.2 Status der Routen von Bird abfragen|

[5.2.4 Realisierung des Heartbeats|

[5.2.5 Emergency-Mode implementieren|

10
10
11
11
11
11
11
13

16
17
17
17
17

18
18
19

INHALTSVERZEICHNIS INHALTSVERZEICHNIS

B3 Testenl 23
6 Staging Umgebung| 24
6.1 Planung| 24
[6.2 Umsetzung|. 24
7 Fazitl 25
Index 26
G hois 26
A o 26

Abbildungsverzeichnis

13.1 Route Injection Architektur|

Tabellenverzeichnis

[2.1 Autbau der 'Open’-Message|
[2.2 Autbau der "Update’-Message]

Liste der Code Snippets

(4.3 delete route Methode|

Formelverzeichnis

Abkiirzungsverzeichnis

[APT___1[Application Programming Interface 1
[DRF __1[Django Rest Framework| 11
[REST 1 [Representational State Transfer] 11
[Border Gateway Protocoll 1
Distributed Denjal of Servied 1
[SQL ™ | [Structured Query Language| 11
[AS | |Autonome Systeme|o 8
VM] Virtuelle Maschinel 11
[MCP__] Mransmission Confrol Protocoll. 13
[RIP 1 [Routing Information Protocol] 13
[Open Shortest Path First] 13
[ASN | [Autonome System Nummer] 13
[JavaScript Object Notation| 18

Kapitel 1
Einleitung

Die zunehmende Abhangigkeit von digitalen Kommunikationsnetzwerken und
die kontinuierliche Weiterentwicklung der globalen Infrastruktur haben zu einer
signifikanten Steigerung des Datenverkehrs im Internet gefithrt. Wahrend diese
Fortschritte zahlreiche Vorteile fiir die Gesellschaft mit sich bringen, eréffnen
sie auch neue Herausforderungen im Hinblick auf die Sicherheit und Stabilitat
des Netzwerkbetriebs. In diesem Zusammenhang gewinnt die Fahigkeit, den
Datenverkehr effektiv zu leiten und gleichzeitig gegen potenzielle Bedrohun-
gen zu schiitzen, zunehmend an Bedeutung. Das [BGP| als das fundamentalste
Routing-Protokoll im Internet, spielt eine kritische Rolle bei der Bestimmung der
optimalen Routen fiir den Datenverkehr zwischen Autonomen Systemen (ASen).
Allerdings hat die BGPFProtokollsuite bisher nur begrenzte Moglichkeiten zur
gezielten Beeinflussung des Datenverkehrs in Ausnahmesituationen oder bei
Sicherheitsvorfallen geboten. Eine solche Ausnahmesituation tritt beispielswei-
se auf, wenn ein Netzwerkressourcen-Engpass aufweist oder wenn bosartige
Akteure versuchen, den Datenverkehr abzufangen oder zu manipulieren. Die
vorliegende Forschung widmet sich daher der Entwicklung eines innovativen
Ansatzes, der es ermoglicht, Internet-Routen tiber gezielt in sogenannte
,Blackholes“zu lenken. Dieses Konzept zielt darauf ab, den Datenverkehr von
bestimmten Quellen oder zu bestimmten Zielen hinzuleiten, indem die betref-
fenden Routen im Netzwerk auf Blackholes abgebildet werden. Diese Blackholes
reprasentieren Pfade im Netzwerk, die keinen tatsachlichen Datenaustausch
ermoglichen, sondern den Verkehr effektiv abfangen und isolieren. Durch die
Einrichtung dieser Blackholes wird eine mafigeschneiderte Methode zur Vertei-
digung gegen [DDoSFAngriffe sowie zur effizienten Nutzung von Ressourcen in

Uberlastsituationen geschaffen. Die Motivation fiir dieses Projekt liegt darin,

KAPITEL 1. EINLEITUNG

die Flexibilitat und die Sicherheitsaspekte von [BGPFRoutings zu erweitern, um
den heutigen Anforderungen an die Netzwerksicherheit und -stabilitit gerecht
zu werden. Durch die Schaffung eines Mechanismus zur Blackhole-Routing
kann das Risiko von Datenverkehrsumleitung durch bosartige Einfliisse mini-
miert und die Moglichkeit zur gezielten Netzwerkressourcenlenkung maximiert
werden. Die Ergebnisse dieses Projekts haben das Potenzial, die bestehenden
Ansétze zur Netzwerkverwaltung und -sicherheit zu erweitern und somit einen
bedeutenden Beitrag zur Aufrechterhaltung der Integritat und Effizienz globaler

Kommunikationsnetzwerke zu leisten.

Kapitel 2

Grundlagen

2.1 Einfiihrung in die Problematik

Um im Falle eines Angriffs schnell reagieren zu kénnen, muss es eine
bequeme und einfache Moglichkeit geben, Routen zu manipulieren. Hierfiir
wurde das Projekt Remote Triggered Blackholing gestartet. Im Falle eines
Angriffs konnten somit IP Préfixe des Angreifers gezielt in ein Blackhole geroutet
werden. Eine Belastung der Zielsysteme kénnte somit verhindert werden, da
die boshaften Pakete des Angreifers somit nicht beim Zielsystem ankommen
wiirden, sondern in das schwarze Loch (Blackhole) weitergeleitet werden. Um die
Routen in Routern manipulieren zu konnen, miissen diese tiber Injektoren in die
Router injiziert werden. Im Verlaufe dieser Projektarbeit wird die Entwicklung
der Injektoren Komponente und der Aufbau einer Staging(Testing) Umgebung
genauer dargelegt. Der Aufbau und die Entwicklung der [API| Komponente wurde
bereits zu einem grofiteil in der T1000 erldutert, jedoch wurde im Rahmen der
T2000 diese um einen Delete-Endpunkt erweitert. [SCHOCH [2022]

10

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

2.2 Technologie Selektion

2.2.1 Django Rest Framework

,Django ist ein Web-Framework, dessen Ziel es ist, die Entwicklung von
Web Applikationen schnell, einfach und tibersichtlich zu machen. Das Djan-
go Representational State Transfer (REST]) Framework, hier nachfolgend als
Django Rest Framework (DRE]) bezeichnet, ist ein [REST] Framework welches
auf Django basiert. Mit [DRE] lassen sich RESTHul [APIk schnell und einfach
gestalten. Hierfiir bietet Django eine Reihe an vorgefertigten Hilfestellung an,
welche im Verlaufe dieser Projektarbeit naher erlautert werden. Datenbank-
modelle werden hier einfach programmatisch deklariert und anschlieBend von
Django automatisch verwaltet. Uber Objekte kénnen somit einzelne Werte aus
der Datenbank entnommen werden, ohne sich mithsam mit Structured Query
Language (SQL]) Queries auseinandersetzen zu missen. Sowohl Django als auch
[DRE basieren auf der Programmiersprache Python [Vgl. SCHOCH [2022, S. §]

2.2.2 Hashicorp Consul

,Consul, entwickelt von Hashicorp, ist eine Netzwerk Service Losung, welche eine
sichere Kommunikation zwischen Services und Applikation erlaubt. Consul kann
sowohl redundant mit mehreren Nodes, als auch standalone genutzt werden. Fiir
diese Projektarbeit, wird eine standalone Losung eingesetzt und es wird lediglich
die Key-Value Store Funktion genutzt. Mit dieser Funktion kénnen Key-Value
[...] Paare iiber das Netzwerk in Consul gespeichert werden.“ [SCHOCH 2022]

2.2.3 Docker

Docker ist Platform zur Containerisierung von Anwendungen. Hierdurch wird
die Moglichkeit geschaffen eine isoliertes und leichtgewichtige Umgebung zu
schaffen, welche sonst lediglich mittels Virtuellen Maschinen (VMs) moglich
wéare. Durch Docker wird auf produktiven System durch die zuséatzliche Iso-
lationsschicht der Containerisierung eine weitere Sicherheitsstufe hinzugefiigt,

welche potenziellen Angreifern den Zugriff auf das Hostsystem erschwert.

2.2.4 Bird

Der Bird Internet Routing Daemon (Bird) ist eine Open-Source-Routing-
Software, die als Router fungiert. Bird implementiert unter anderem [BGP)

11

2.2. TECHNOLOGIE SELEKTION KAPITEL 2. GRUNDLAGEN

um Routing-Informationen zwischen Routern auszutauschen und optimale
Routenentscheidungen zu treffen. Bird arbeitet neben anderen BGPFRoutern,
um [BGPlSessions aufzubauen, Routing-Updates auszutauschen und Routing-
Informationen zu speichern. Bird kann [BGPFRouten exportieren und an andere
Router weitergeben, indem es[BGPH Update‘-Messages verwendet und Exportre-
geln in seiner Konfigurationsdatei folgt. Diese Regeln definieren, welche Routen
exportiert werden sollen und konnen durch Filter und Richtlinien gesteuert
werden. Durch den Export von [BGPFRouten ermoglicht Bird eine effiziente

und zuverldssige Kommunikation und Weiterleitung in grolen Netzwerken.

12

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

2.3 Stand der Technik

Das ist ein Protokoll des Internet-Routings, das die besten Wege fiir den
Datenverkehr zwischen ASen bestimmt. Im urspriinglichen Sinne war mit einem
eine Organisation mit einem Standort gemeint, welche intern iiber ein inter-
nes routing Protokoll verfiigte. Mit der Zeit hat sich die Bedeutung eines
abgewandelt und eine Autonome System Nummer (ASN]) kann von einer Orga-
nisation Standortiibergreifend verwendet werden bzw. eine Organisation kann
iiber mehrere ASNs verfiigen. Es verwendet Peering-Verbindungen zwischen
Routern, um Informationen tiber erreichbare Netzwerke auszutauschen und
die optimalen Pfade fiir den Datenaustausch zu ermitteln. Anders als bei her-
kommlichen Routing Protokollen wie dem Routing Information Protocol (RIP)
oder Open Shortest Path First (OSPF]), wird hier eine direkte Transmission
Control Protocol (TCP)) Verbindung zwischen Routern(Neighbours/Nachbarn)
hergestellt. Eine weitere Unterscheidung besteht darin, dass es sich bei [BGP|um
"Policy’-basiertes Routing, im Vergleich zu ‘Metrik® basierten Routing handelt.
Konkret bedeutet dies, dass ein selbst bestimmen kann, wie Datenverkehr

geroutet werden soll, sollte das iiber mindestens zwei Uplinks verfligen.

Wenn zwei Nachbarn eine [TCPl Verbindung aufgebaut haben, begin-
nen diese Informationen in Form von Nachrichten auszutauschen. Jede
Nachricht besteht aus einem Header, und dem tatséchlichen Inhalt. [Vgl. BELJ-
NUM 2002, S. 19 f.] Um eine Verbindung herzustellen, miissen sich Router
iiber eine ‘Open‘-Message verbinden. Diese wird direkt nach dem Aufbau der
[TCPI Verbindung ausgetauscht. [Vgl. BELINUM 2002, S. 20 f.]

Version | My AS | Hold time | Identifier | Parlen | Optional parameters
1 byte | 2 bytes | 2 bytes 4 bytes | 1 byte 0-255 bytes

Tabelle 2.1: Aufbau der ’Open’-Message
Quelle: [RFC4271 REKHTER, HARES und L12006] in Anlehnung an [BEIINUM
2002, S. 20]

Sollte die Open-Message erfolgreich vom Gegenstiick angenommen worden
sein, sendet dieser eine 'Keepalive’-Message zuriick. Anschliefend wird die
BGP-Routentabelle tiber 'Update’-Messages ausgetauscht. [Vgl. BEIINUM 2002,
S. 20]

13

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

UR length | Withdrawn routes | PA length | Path attributes | NLRI
2 bytes Variable 2 bytes Variable Variable

Tabelle 2.2: Aufbau der 'Update’-Message
Quelle: [RFC4271 REKHTER, HARES und L1 2006] in Anlehnung an [BEIINUM
2002, S. 20]

Durch die ‘Update‘-Message werden die eigentlichen Informationen iiber-
tragen. Hierdurch konnen neue Routen hinzugefiigt, oder alte Routen zurtick-
gezogen werden. Ein nicht optionales Attribute ist der ‘AS_PATH‘, welcher

beschreibt, iber welche bestimmte Prifixe zu erreichen sind.

14

2.3. STAND DER TECHNIK KAPITEL 2. GRUNDLAGEN

[BGPFCommunities sind ein Mechanismus, mit welchem Netzwerkbetreiber
spezifische Gruppen oder Kategorien von Prifixen markieren kénnen. Die-
se Markierungen, als ,,Communities* bezeichnet, konnen verwendet werden,
um Routen zu identifizieren und zu beeinflussen, wie sie von anderen ASen
interpretiert werden. Durch die Verwendung von Communities kénnen Netz-
werkbetreiber das Routing auf feinere Weise steuern und anpassen, ohne die
Kernstruktur des BGPINetzwerks zu verandern. Die Manipulation von Routen
mittels Communities erfolgt, indem einem bestimmten Préfix eine oder
mehrere BGPICommunities zugewiesen werden. Andere konnen dann diese
Community-Markierungen verwenden, um spezifische Aktionen auszufiihren,

wie z.B.:

o Pfadwahl beeinflussen: Durch das Zuweisen von Communities zu be-
stimmten Prafixen konnen Netzwerkbetreiber festlegen, wie andere
ihre Routen interpretieren sollen. Dies kann dazu verwendet werden, den

bevorzugten Weg fiir den Datenverkehr zu beeinflussen.

o Traffic-Engineering: Netzwerkbetreiber kénnen Communities verwenden,
um den Datenverkehrsfluss zu steuern. Durch Markieren von Préafixen
konnen sie bestimmte dazu anleiten, den Datenverkehr auf bestimmten

Wegen zu leiten, um Netzwerkressourcen effizienter zu nutzen.

« Blackhole-Routing: Communities konnen dazu genutzt werden,
bestimmte Préfixe zu markieren und den Datenverkehr iiber Blackholes
zu lenken, um Angriffe oder Uberlastungen zu bewiltigen. Spezielle fiir
Blackholing wurde eine eigene Community definiert: 65535:666 [Vgl.
KING u. a. [2016]

« Routenfilterung: konnen Community-Markierungen verwenden, um
prizise Routenfilterung durchzufithren. Damit kénnen sie bestimmte
Routen von bestimmten Quellen oder fiir bestimmte Zwecke filtern oder

akzeptieren.

Die Verwendung von Communities ermoglicht eine flexiblere und zielge-
richtete Steuerung des Internet-Routings. Netzwerkbetreiber kénnen so gezielt
auf unterschiedliche Anforderungen reagieren und gleichzeitig die Integritat
und Stabilitit des BGPINetzwerks aufrechterhalten.

15

Kapitel 3

Architekur

Die Architektur des Route Injection Service besteht aus drei wesentlichen
Bestandteilen, welche entweder direkt verbunden sind oder mittels Hashicorp

Consul Daten austauschen konnen.

Abbildung 3.1: Route Injection Architektur

Quelle: Firmenintern

16

3.1. [AP] KAPITEL 3. ARCHITEKUR

3.1 [API

Die [APT] ist dafiir verantwortlich die Eingaben des Users, welche iiber die
Engine iibermittelt wurden zu tiberpriifen und zu validieren. Sind die Eingaben
nicht korrekt, so gibt die eine entsprechende Fehlermeldung zurtick. In der
Zukunft wird die [API] auch dafiir verantwortlich sein entsprechende Monitoring
Endpunkte zur Verfiigung zu stellen, sodass der allgemeine Status des Service

uberwacht werden kann.

3.2 Hashicorp Consul

Hashicorp Consul, im weiteren Verlauf nur ‘Consul* genannt, wird als Zwischen-
speicher fiir Routen und deren injizierte BGPFCommunities verwendet. Des

Weiteren konnen Injectoren hier Thren ‘Heartbeat® abspeichern.

3.3 Injector

Der Injector bezieht periodisch(alle 5 Sekunden) die in Consul gespeicherten
Routen. Sollte es hier eine Anderung gegeben haben, wird eine Konfigurations-
datei fir den Bird Routingdaemon neu erstellt. Anschliefend wird tiber das

'Bird Controlsocket” der Befehl zum Neuladen der Konfiguration gegeben.

3.4 Router

Als Router wird der Bird Routingdaemon eingesetzt. Dieser stellt eine [BGP
Session mit einem physischen Router her, welcher die von Bird zu Verfiigung
gestellten Router importiert und innerhalb des [BGPFNetzwerks weitergibt.

17

Kapitel 4

API Komponente

4.1 Aufgaben

Die [APIlist die Schnittstelle des Service und auflen stehenden Technologien wie
der Anexia Engine. Thre Hauptaufgabe besteht darin, eine strukturierte Inter-
aktionsmoglichkeit zu bieten, die es internen Benutzern iiber Systeme wie der
Anexia Engine ermoglicht, BGPIRouten mit zugehorigen BGPICommunities in
das Netzwerk zu injizieren. Dies geschieht durch die Annahme von JavaScript
Object Notation (ISONI)-Anfragen, die spezifische Informationen enthalten,
namlich TPv4- oder IPv6-Prifixe und die entsprechenden [BGPICommunities.
Die[API fiihrt eine umfassende Validierung der eingehenden Daten durch, um si-
cherzustellen, dass die bereitgestellten Informationen korrekt und im erwarteten
Format vorliegen. Diese Validierung umfasst die Uberpriifung der Richtigkeit
der IP-Adressbereiche sowie die syntaktische Korrektheit der zugeordneten
[BGPFCommunities. Durch diesen Schritt wird gewéhrleistet, dass nur giltige
Informationen in das System eingebracht werden. Die validierten Daten werden
anschliefend an Consul, tiber dessen eigene [API] iibermittelt. Die Daten werden

so abgelegt, dass der Injector einen erleichterten Zugriff hat.

18

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

4.2 Umsetzung

Da die Konzeption und Implementierung der [API] schon umfassend in der Pro-
jektarbeit T1000 erldutert wurde, wird auf eine Wiederholung dessen verzichtet.
In diesem Bericht wird lediglich die Implementierung des ‘Delete’-Endpunkts
dargestellt, da dieser aus zeitlichen Griinden nicht mehr in den ersten beiden
Praxisphase implementiert werden konnte, jedoch ein Grundbestandteil des

entwickelten Service ist.

Die Implementierung eines ‘Delete‘’-Endpunkts in der API, mittels des

Django Rest Frameworks, ermoglicht das Loschen von Routen aus dem System.

class BaseRouteViewSet (
CreateModelMixin,
ReadOnlyModelViewSet,

BaseRequestViewSet,

@action(detail=False, url_path=r"([A-Za-z-_/]*)status/(?7P<
task_info_id>[0-9a-z-]+)")
def status(self, request, task_info_id):

route_object = get_object_or_404(

self.serializer_class.Meta.model, task_info_id=

task_info_id

)

propagate_status (route_object)

return super () .status (request, task_info_id)

Code Snippet 4.1: BaseRouteViewset Klasse

Der in Snippet 4.1 gezeigte Code stellt eine Mutterklasse dar, von welcher
sowohl der ‘Create’, als auch ‘Delete‘-Endpunkt erben. Durch diese Klasse wird
die Moglichkeit gegeben, von der Anexia Engine erwartete Endpunkte einfach
zu implementieren, ohne dass sich ein Entwickler mit den Feinheiten dessen
auseinandersetzen muss. Da hier die CreateModelMixin Klasse geerbt wird,
stellt sich das automatisch ein 'POST’-Requests fiir diesen Endpunkt zu

akzeptieren.

19

4.2. UMSETZUNG KAPITEL 4. API KOMPONENTE

class DeleteRouteViewSet (BaseRouteViewSet):
queryset = DeleteRoute.objects.all()

serializer_class = DeleteRouteSerializer

def perform_create(self, serializer):
super () .perform_create(serializer)

delete_route(serializer.instance)

Code Snippet 4.2: DeleteRouteViewset Klasse

Die tatsachliche Implementierung fallt durch das Erben von der ‘Base-
RouteViewSet* Mutterklasse sehr simpel aus. Durch das Uberschreiben der
perform_create Methode, welche vom zur Verfiigung gestellt wird, kann
diese als Hook benutzt werden um eigenen Code ausfithren zu lassen. Mit der
Super Methode wird sichergestellt, dass die nicht tiberschriebene Ursprungs-
methode von perform_create ausgefithrt wird. Das erstellt dann einen
Datenbankeintrag mit den vom Nutzer eingegeben Werten. Vor dem Ende
des Kontextes der Methode wird noch eine weitere Methode delete route

aufgerufen.

def delete_route(instance):
consul_instance = prepare_consul (os.getenv ("CONSUL_HOST"),
os.getenv ("CONSUL_PORT"))
prefix = str(instance.prefix)
prefix_encoding = get_prefix_encoding(prefix)
consul_instance.kv.delete (

f’vi/route/global/{prefix_encodingl}/{prefix.replace

GV
)

update_active_injectors (instance)

Code Snippet 4.3: delete route Methode

Hier findet nun das eigentliche Ubermitteln der Daten an Consul statt.

20

Kapitel 5

Injector Komponente

5.1 Aufgaben

Der Injector ist der zentrale Baustein des Route Injection Service, der die
Moglichkeit bietet, mittels [BGPl Communities, Routen in das Netzwerk zu

injizieren. Der Injector erfiillt dabei eine Reihe von wesentlichen Aufgaben:

Zuallererst ist der Injector fur die Konvertierung der von der [APIl empfan-
genen Routen in eine fiir den Router (Bird) verstandliche Konfigurationsdatei
verantwortlich. Diese Konvertierung ist von entscheidender Bedeutung, um
die Weiterleitung der Routen an den Router in einem kompatiblen Format
sicherzustellen. Wéahrend die Validierung der Prafixe und Communities von
der [APIl Komponente tibernommen wird, hat der Injector eine eigene Validie-
rung fiir Routen, welchen iiber den Emergency-Mode angegeben werden, da
hier die [API] Komponente tiberbriickt wird. Bei auftretenden Konflikten oder
Unstimmigkeiten kann der Injector angemessene Mafinahmen ergreifen, um
die Integritat der anderen Komponenten und schlussendlich des Netzwerks, zu
gewédhrleisten. Ein wichtiger Aspekt ist auch die aktive Kommunikation des
Injectors mit dem Router (Bird). Diese Kommunikation erfolgt, um die generier-
ten Konfigurationsdnderungen effektiv zu iibertragen und sicherzustellen, dass
die injizierten Routen nahtlos in das Routing-Protokoll des Routers integriert
werden. Schliellich stellt der Injector durch prazises loggen sicher, dass im
Falle eines Fehlers, oder im schlimmsten Fall, bei einem Absturz der Kompo-
nente, Ereignisse festgehalten werden. Zusammenfassend fungiert der Injector
als entscheidende Schnittstelle, die die Funktionen der [APIl und des Routers

miteinander verbindet. Mit seiner intelligenten Konvertierung und Verwaltung

21

5.1. AUFGABEN KAPITEL 5. INJECTOR KOMPONENTE

von Routen durch [BGP| Communities gewahrleistet er, dass die gewiinschten
Routing-Anderungen prizise und effizient im [BGPFNetzwerk implementiert

werden.

22

5.2. UMSETZUNG KAPITEL 5. INJECTOR KOMPONENTE

5.2 Umsetzung

5.2.1 Generieren der Config Files fiir Bird

Um die Routen an den Bird Routing Daemon tiibermitteln zu konnen, miissen
diese erst in eine fiir Bird verstédndliche Konfigurationsdatei umgewandelt

werden.

Integritit der Konfigurationsdatei sicherstellen

5.2.2 Status der Routen von Bird abfragen

Evaluation der pybird Bibliothek
5.2.3 Bird und Bird6 aufteilen
5.2.4 Realisierung des Heartbeats

5.2.5 Emergency-Mode implementieren

5.3 Testen

23

Kapitel 6

Staging Umgebung

6.1 Planung

6.2 Umsetzung

24

Kapitel 7

Fazit

25

Literatur

BewunNuM, Iljitsch van [2002]. Building Reliable Networks with the Border
Gateway Protocol. O'Reilly [siehe S. [13] [14].

KiNG, Thomas u.a. [Okt. 2016]. BLACKHOLE Commaunity. RFC 7999. poTr:
10.17487/RFC7999. URL: https://www.rfc-editor.org/info/rfc7999

[siche S. [15].
REKHTER, Yakov, Susan HARES und Tony LI [Jan. 2006]. A Border Gateway

Protocol 4 (BGP-4). RFC 4271. po1: 10 . 17487 /RFC4271. URL: https :
//www . rfc-editor.org/info/rfc4271 [siche S.[13] [14].

SCcHOCH, Leon [Okt. 2022]. API fiir Route Injection [siehe S. [10] [L1].

26

https://doi.org/10.17487/RFC7999
https://www.rfc-editor.org/info/rfc7999
https://doi.org/10.17487/RFC4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271

	1 Einleitung
	2 Grundlagen
	2.1 Einführung in die Problematik
	2.2 Technologie Selektion
	2.2.1 Django Rest Framework
	2.2.2 Hashicorp Consul
	2.2.3 Docker
	2.2.4 Bird

	2.3 Stand der Technik

	3 Architekur
	3.1 API
	3.2 Hashicorp Consul
	3.3 Injector
	3.4 Router

	4 API Komponente
	4.1 Aufgaben
	4.2 Umsetzung

	5 Injector Komponente
	5.1 Aufgaben
	5.2 Umsetzung
	5.2.1 Generieren der Config Files für Bird
	5.2.2 Status der Routen von Bird abfragen
	5.2.3 Bird und Bird6 aufteilen
	5.2.4 Realisierung des Heartbeats
	5.2.5 Emergency-Mode implementieren

	5.3 Testen

	6 Staging Umgebung
	6.1 Planung
	6.2 Umsetzung

	7 Fazit
	Index
	Literaturverzeichnis
	Anhang

